Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Evaluation of the 5-ethynyl-1,3,3-trimethyl-3H-indole ligand for molecular materials applications

David Jago https://orcid.org/0000-0002-8696-5545 A , David C. Milan https://orcid.org/0000-0002-6569-2816 B , Alexandre N. Sobolev C , Simon J. Higgins https://orcid.org/0000-0003-3518-9061 B , Andrea Vezzoli https://orcid.org/0000-0002-8059-0113 B , Richard J. Nichols https://orcid.org/0000-0002-1446-8275 B and George A. Koutsantonis https://orcid.org/0000-0001-8755-3596 A *
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia.

B Department of Chemistry, University of Liverpool, Liverpool, UK.

C Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia.

* Correspondence to: george.koutsantonis@uwa.edu.au

Handling Editor: Martyn Coles

Australian Journal of Chemistry 76(4) 209-230 https://doi.org/10.1071/CH23069
Submitted: 12 April 2023  Accepted: 22 May 2023   Published: 6 July 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The modification of conjugated organic compounds with organometallic moieties allows the modulation of the electronic and optoelectronic properties of such compounds and lends them to a variety of material applications. The organometallic complexes [M(Cp′)(L)n] (M = Ru or Fe; Cp′ = cyclopentadiene (Cp) or pentamethylcyclopentadiene (Cp*); (L)n = (PPh3)2 or 1,2-bi(diphenylphosphino)ethane (dppe)) and [M(L)n] (M = Ru; (L)n = (dppe)2 or (P(OEt)3)4; or M = Pt; (L)n = (PEt3)2, (PPh3)2 or tricyclohexylphosphine, (PCy3)2) modified with a 5-ethynyl-1,3,3-trimethyl-3H-indole ligand were prepared and characterised by NMR spectroscopy, IR and single-crystal X-ray diffraction. Cyclic voltammetry and IR spectroelectrochemistry of the ruthenium systems showed a single-electron oxidation localised over the M–C≡C–aryl moiety. The N-heteroatom of the indole ligand showed Lewis base properties and was able to extract a proton from a vinylidene intermediate as well as coordinate to CuI. Examples from the wire-like compounds were also studied by single-molecule break junction experiments but molecular junction formation was not observed. This is most likely attributable to the binding characteristics of the substituted terminal indole groups used here to the gold contacts.

Keywords: cyclic voltammetry, metal alkynyl, molecular materials, molecular electronics, organometallic chemistry, ruthenium, single-molecule electronics, single-molecule junction.


References

[1]  PFH Schwab, JR Smith, J Michl, Synthesis and properties of molecular rods. 2. Zig-zag rods. Chem Rev 2005, 105, 1197.
         | Synthesis and properties of molecular rods. 2. Zig-zag rods.Crossref | GoogleScholarGoogle Scholar |

[2]  DT McQuade, AE Pullen, TM Swager, Conjugated polymer-based chemical sensors. Chem Rev 2000, 100, 2537.
         | Conjugated polymer-based chemical sensors.Crossref | GoogleScholarGoogle Scholar |

[3]  JM Tour, Conjugated macromolecules of precise length and constitution. Organic synthesis for the construction of nanoarchitectures. Chem Rev 1996, 96, 537.
         | Conjugated macromolecules of precise length and constitution. Organic synthesis for the construction of nanoarchitectures.Crossref | GoogleScholarGoogle Scholar |

[4]  PJ Low, Metal complexes in molecular electronics: progress and possibilities. Dalton Trans 2005, 17, 2821.
         | Metal complexes in molecular electronics: progress and possibilities.Crossref | GoogleScholarGoogle Scholar |

[5]  NJ Long, Organometallic compounds for nonlinear optics — the search for en-light-enment. Angew Chem Int Ed 1995, 34, 21.
         | Organometallic compounds for nonlinear optics — the search for en-light-enment.Crossref | GoogleScholarGoogle Scholar |

[6]  X Sala, S Maji, R Bofill, J García-Antón, L Escriche, A Llobet, Molecular water oxidation mechanisms followed by transition metals: state of the art. Acc Chem Res 2014, 47, 504.
         | Molecular water oxidation mechanisms followed by transition metals: state of the art.Crossref | GoogleScholarGoogle Scholar |

[7]  WY Wong, CL Ho, Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes. Acc Chem Res 2010, 43, 1246.
         | Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.Crossref | GoogleScholarGoogle Scholar |

[8]  VWW Yam, Molecular design of transition metal alkynyl complexes as building blocks for luminescent metal-based materials: structural and photophysical aspects. Acc Chem Res 2002, 35, 555.
         | Molecular design of transition metal alkynyl complexes as building blocks for luminescent metal-based materials: structural and photophysical aspects.Crossref | GoogleScholarGoogle Scholar |

[9]  Tomasik P, Ratajewicz Z, Newkome GR, Strekowski L. The chemistry of heterocylic compounds. Pyridine–metal complexes. Wiley; 1985.

[10]  G de Ruiter, M Lahav, ME van der Boom, Pyridine coordination chemistry for molecular assemblies on surfaces. Acc Chem Res 2014, 47, 3407.
         | Pyridine coordination chemistry for molecular assemblies on surfaces.Crossref | GoogleScholarGoogle Scholar |

[11]  ZH He, HR Li, ZP Li, Iodine-mediated synthesis of 3H-indoles via intramolecular cyclization of enamines. J Org Chem 2010, 75, 4636.
         | Iodine-mediated synthesis of 3H-indoles via intramolecular cyclization of enamines.Crossref | GoogleScholarGoogle Scholar |

[12]  KH Lim, O Hiraku, K Komiyama, T Koyano, M Hayashi, TS Kam, Biologically active indole alkaloids from Kopsia arborea. J Nat Prod 2007, 70, 1302.
         | Biologically active indole alkaloids from Kopsia arborea.Crossref | GoogleScholarGoogle Scholar |

[13]  T Kawasaki, K Higuchi, Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat Prod Rep 2005, 22, 761.
         | Simple indole alkaloids and those with a non-rearranged monoterpenoid unit.Crossref | GoogleScholarGoogle Scholar |

[14]  TS Kam, YM Choo, New indole alkaloids from Alstonia macrophylla. J Nat Prod 2004, 67, 547.
         | New indole alkaloids from Alstonia macrophylla.Crossref | GoogleScholarGoogle Scholar |

[15]  A Haque, RA Al-Balushi, IJ Al-Busaidi, MS Khan, PR Raithby, Rise of conjugated poly-ynes and poly(metalla-ynes): from design through synthesis to structure–property relationships and applications. Chem Rev 2018, 118, 8474.
         | Rise of conjugated poly-ynes and poly(metalla-ynes): from design through synthesis to structure–property relationships and applications.Crossref | GoogleScholarGoogle Scholar |

[16]  NJ Long, CK Williams, Metal alkynyl σ complexes: synthesis and materials. Angew Chem Int Ed 2003, 42, 2586.
         | Metal alkynyl σ complexes: synthesis and materials.Crossref | GoogleScholarGoogle Scholar |

[17]  MI Bruce, BG Ellis, M Gaudio, C Lapinte, G Melino, F Paul, BW Skelton, ME Smith, L Toupet, AH White, Preparation, structures and some reactions of novel diynyl complexes of iron and ruthenium. Dalton Trans 2004, 10, 1601.
         | Preparation, structures and some reactions of novel diynyl complexes of iron and ruthenium.Crossref | GoogleScholarGoogle Scholar |

[18]  LA Miller-Clark, T Ren, Syntheses and material applications of Ru(II)(bisphosphine)2 alkynyls. J Organomet Chem 2021, 951, 122003.
         | Syntheses and material applications of Ru(II)(bisphosphine)2 alkynyls.Crossref | GoogleScholarGoogle Scholar |

[19]  GA Koutsantonis, GI Jenkins, PA Schauer, B Szczepaniak, BW Skelton, C Tan, AH White, Coordinating tectons: bipyridyl-terminated Group 8 alkynyl complexes. Organometallics 2009, 28, 2195.
         | Coordinating tectons: bipyridyl-terminated Group 8 alkynyl complexes.Crossref | GoogleScholarGoogle Scholar |

[20]  GA Koutsantonis, PJ Low, CFR Mackenzie, BW Skelton, DS Yufit, Coordinating tectons: bimetallic complexes from bipyridyl terminated Group 8 alkynyl complexes. Organometallics 2014, 33, 4911.
         | Coordinating tectons: bimetallic complexes from bipyridyl terminated Group 8 alkynyl complexes.Crossref | GoogleScholarGoogle Scholar |

[21]  MP Cifuentes, MG Humphrey, GA Koutsantonis, NA Lengkeek, S Petrie, V Sanford, PA Schauer, BW Skelton, R Stranger, AH White, Coordinating tectons: bipyridyl terminated allenylidene complexes. Organometallics 2008, 27, 1716.
         | Coordinating tectons: bipyridyl terminated allenylidene complexes.Crossref | GoogleScholarGoogle Scholar |

[22]  PA Schauer, BW Skelton, GA Koutsantonis, Coordinating tectons 4: coordination chemistry of the 4,5-diazafluoren-9-yl moiety as a metallo-ligand for allenylidene complexes. Organometallics 2015, 34, 4975.
         | Coordinating tectons 4: coordination chemistry of the 4,5-diazafluoren-9-yl moiety as a metallo-ligand for allenylidene complexes.Crossref | GoogleScholarGoogle Scholar |

[23]  S Bock, CF Mackenzie, BW Skelton, LT Byrne, GA Koutsantonis, PJ Low, Clusters as ligands: synthesis, structure and coordination chemistry of ruthenium clusters derived from 4- and 5-ethynyl-2,2′-bipyridine. J Organomet Chem 2016, 812, 190.
         | Clusters as ligands: synthesis, structure and coordination chemistry of ruthenium clusters derived from 4- and 5-ethynyl-2,2′-bipyridine.Crossref | GoogleScholarGoogle Scholar |

[24]  JG Rodríguez, A Urrutia, J Eugenio de Diego, M Paz Martínez-Alcazar, I Fonseca, Synthesis of 2′-alkylspiro[2-X-cyclohexan-1,3′-3′ H-indole] (X = H; X = CH3) by an unexpected reaction between an organomagnesium halide and 2′-methylspiro[2-X-cyclohexan-1,3′-3′H-indole]. X-ray structure of a fluorescent dimeric compound. J Org Chem 1998, 63, 4332.
         | Synthesis of 2′-alkylspiro[2-X-cyclohexan-1,3′-3′ H-indole] (X = H; X = CH3) by an unexpected reaction between an organomagnesium halide and 2′-methylspiro[2-X-cyclohexan-1,3′-3′H-indole]. X-ray structure of a fluorescent dimeric compound.Crossref | GoogleScholarGoogle Scholar |

[25]  JG Rodríguez, A Urrutia, Synthesis of sterically hindered 4a,9a-disubstituted 1,2,3,4,4a,9a-hexahydrocarbazoles from 4a-methyl-1,2,3,4-tetrahydro-4aH-carbazole with organolithium reagents. Tetrahedron 1998, 54, 15613.
         | Synthesis of sterically hindered 4a,9a-disubstituted 1,2,3,4,4a,9a-hexahydrocarbazoles from 4a-methyl-1,2,3,4-tetrahydro-4aH-carbazole with organolithium reagents.Crossref | GoogleScholarGoogle Scholar |

[26]  JR Fehlner, PJ Borowski, PL Pettinato, AJ Freyer, Condensation of 2,3,3-trimethyl-3H-indole with methylene iodide and oxidative coupling. J Org Chem 1984, 49, 170.
         | Condensation of 2,3,3-trimethyl-3H-indole with methylene iodide and oxidative coupling.Crossref | GoogleScholarGoogle Scholar |

[27]  Y Kanaoka, K Miyashita, O Yonemitsu, 3H-Indoles. IV. Photo-and peroxide-induced oxygenation of 2-ethyl-3H-indoles. Chem Pharm Bull 1970, 18, 634.
         | 3H-Indoles. IV. Photo-and peroxide-induced oxygenation of 2-ethyl-3H-indoles.Crossref | GoogleScholarGoogle Scholar |

[28]  Y Kanaoka, K Miyashita, O Yonemitsu, 3H-indoles—II: synthesis of 3-alkyl-3H-indoles by the alkylation of 2,3-disubstituted indoles with polyphosphate ester and some reactions of the 3H-indole system. Tetrahedron 1969, 25, 2757.
         | 3H-indoles—II: synthesis of 3-alkyl-3H-indoles by the alkylation of 2,3-disubstituted indoles with polyphosphate ester and some reactions of the 3H-indole system.Crossref | GoogleScholarGoogle Scholar |

[29]  SY Liu, WZ Zhang, JP Qu, BM Wang, Engaging 2-methyl indolenines in a tandem condensation/1,5-hydride transfer/cyclization process: construction of a novel indolenine–tetrahydroquinoline assembly. Org Chem Front 2018, 5, 3008.
         | Engaging 2-methyl indolenines in a tandem condensation/1,5-hydride transfer/cyclization process: construction of a novel indolenine–tetrahydroquinoline assembly.Crossref | GoogleScholarGoogle Scholar |

[30]  Q-C Wang, DH Qu, J Ren, LH Xu, MY Liu, H Tian, New benzo[e]indolinium cyanine dyes with two different fluorescence wavelengths. Dyes Pigm 2003, 59, 163.
         | New benzo[e]indolinium cyanine dyes with two different fluorescence wavelengths.Crossref | GoogleScholarGoogle Scholar |

[31]  AA Shachkus, RY Degutite, Reaction of 2,3,3-trimethyl-3H-indole salts with acrylamide. Synthesis of 1,2,3,4,10,10a-hexahydropyrimido[1,2-a]indol-2-one derivatives. Chem Heterocycl Compd 1986, 22, 852.
         | Reaction of 2,3,3-trimethyl-3H-indole salts with acrylamide. Synthesis of 1,2,3,4,10,10a-hexahydropyrimido[1,2-a]indol-2-one derivatives.Crossref | GoogleScholarGoogle Scholar |

[32]  M Bruce, G Koutsantonis, Cyclopentadienyl-ruthenium and -osmium chemistry. XXXV. Some ethynyl, vinylidene and related complexes. Aust J Chem 1991, 44, 207.
         | Cyclopentadienyl-ruthenium and -osmium chemistry. XXXV. Some ethynyl, vinylidene and related complexes.Crossref | GoogleScholarGoogle Scholar |

[33]  K Sonogashira, T Yatake, Y Tohda, S Takahashi, N Hagihara, Novel preparation of σ-alkynyl complexes of transition metals by copper(I) iodide-catalysed dehydrohalogenation. J Chem Soc, Chem Commun 1977, 9, 291.
         | Novel preparation of σ-alkynyl complexes of transition metals by copper(I) iodide-catalysed dehydrohalogenation.Crossref | GoogleScholarGoogle Scholar |

[34]  J Vicente, J Gil-Rubio, N Barquero, PG Jones, D Bautista, Synthesis of luminescent alkynyl gold metalaligands containing 2,2′-bipyridine-5-yl and 2,2′: 6′,2″-terpyridine-4-yl donor groups. Organometallics 2008, 27, 646.
         | Synthesis of luminescent alkynyl gold metalaligands containing 2,2′-bipyridine-5-yl and 2,2′: 6′,2″-terpyridine-4-yl donor groups.Crossref | GoogleScholarGoogle Scholar |

[35]  WM Khairul, MA Fox, NN Zaitseva, M Gaudio, DS Yufit, BW Skelton, AH White, JAK Howard, MI Bruce, PJ Low, Transition metal alkynyl complexes by transmetallation from Au(C≡CAr)(PPh3) (Ar = C6H5 or C6H4Me-4). Dalton Trans 2009, 4, 610.
         | Transition metal alkynyl complexes by transmetallation from Au(C≡CAr)(PPh3) (Ar = C6H5 or C6H4Me-4).Crossref | GoogleScholarGoogle Scholar |

[36]  M Rudolph, ASK Hashmi, Gold catalysis in total synthesis – an update. Chem Soc Rev 2012, 41, 2448.
         | Gold catalysis in total synthesis – an update.Crossref | GoogleScholarGoogle Scholar |

[37]  A Leyva-Pérez, A Doménech, SI Al-Resayes, A Corma, Gold redox catalytic cycles for the oxidative coupling of alkynes. ACS Catal 2012, 2, 121.
         | Gold redox catalytic cycles for the oxidative coupling of alkynes.Crossref | GoogleScholarGoogle Scholar |

[38]  MA Fox, RL Roberts, WM Khairul, F Hartl, PJ Low, Spectroscopic properties and electronic structures of 17-electron half-sandwich ruthenium acetylide complexes, [Ru(C≡CAr)(L-2)Cp′]+ (Ar = phenyl, p-tolyl, 1-naphthyl, 9-anthryl; L2 = (PPh3)2, Cp′ = Cp; L2 = dppe; Cp′ = Cp*). J Organomet Chem 2007, 692, 3277.
         | Spectroscopic properties and electronic structures of 17-electron half-sandwich ruthenium acetylide complexes, [Ru(C≡CAr)(L-2)Cp′]+ (Ar = phenyl, p-tolyl, 1-naphthyl, 9-anthryl; L2 = (PPh3)2, Cp′ = Cp; L2 = dppe; Cp′ = Cp*).Crossref | GoogleScholarGoogle Scholar |

[39]  DP Harrison, VJ Kumar, JN Noppers, JBG Gluyas, AN Sobolev, SA Moggach, PJ Low, Iron vs ruthenium: syntheses, structures and IR spectroelectrochemical characterisation of half-sandwich Group 8 acetylide complexes. New J Chem 2021, 45, 14932.
         | Iron vs ruthenium: syntheses, structures and IR spectroelectrochemical characterisation of half-sandwich Group 8 acetylide complexes.Crossref | GoogleScholarGoogle Scholar |

[40]  IR Whittall, MG Humphrey, DCR Hockless, BW Skelton, AH White, Organometallic complexes for non-linear optics. 2. Syntheses, electrochemical studies, structural characterization, and computationally derived molecular quadratic hyperpolarizabilities of ruthenium σ-arylacetylides: X-ray crystal structures of Ru(C≡CPh)(PMe3)2(η-C5H5) and Ru(C≡CC6H4NO2-4)(L)2(η-C5H5) (L = PPh3, PMe3). Organometallics 1995, 14, 3970.
         | Organometallic complexes for non-linear optics. 2. Syntheses, electrochemical studies, structural characterization, and computationally derived molecular quadratic hyperpolarizabilities of ruthenium σ-arylacetylides: X-ray crystal structures of Ru(C≡CPh)(PMe3)2(η-C5H5) and Ru(C≡CC6H4NO2-4)(L)2(η-C5H5) (L = PPh3, PMe3).Crossref | GoogleScholarGoogle Scholar |

[41]  CFR Mackenzie, S Bock, CY Lim, BW Skelton, C Nervi, DA Wild, PJ Low, GA Koutsantonis, Coordinating tectons. Experimental and computational infrared data as tools to identify conformational isomers and explore electronic structures of 4-ethynyl-2,2′-bipyridine complexes. Organometallics 2017, 36, 1946.
         | Coordinating tectons. Experimental and computational infrared data as tools to identify conformational isomers and explore electronic structures of 4-ethynyl-2,2′-bipyridine complexes.Crossref | GoogleScholarGoogle Scholar |

[42]  IR Whittall, MG Humphrey, S Houbrechts, A Persoons, DCR Hockless, Organometallic complexes for non-linear optics. 8.1 Syntheses and molecular quadratic hyperpolarizabilities of systematically varied (triphenylphosphine)gold σ-arylacetylides: X-ray crystal structures of Au(C⋮CR)(PPh3) (R = 4-C6H4NO2, 4,4′-C6H4C6H4NO2). Organometallics 1996, 15, 5738.
         | Organometallic complexes for non-linear optics. 8.1 Syntheses and molecular quadratic hyperpolarizabilities of systematically varied (triphenylphosphine)gold σ-arylacetylides: X-ray crystal structures of Au(C⋮CR)(PPh3) (R = 4-C6H4NO2, 4,4′-C6H4C6H4NO2).Crossref | GoogleScholarGoogle Scholar |

[43]  MI Bruce, AG Swincer, RC Wallis, Cyclopentadienyl–ruthenium and -osmium chemistry. Some reactions of substituted vinylidene complexes. J Organomet Chem 1979, 171, C5.
         | Cyclopentadienyl–ruthenium and -osmium chemistry. Some reactions of substituted vinylidene complexes.Crossref | GoogleScholarGoogle Scholar |

[44]  MA Fox, JE Harris, S Heider, V Pérez-Gregorio, ME Zakrzewska, JD Farmer, DS Yufit, JAK Howard, PJ Low, A simple synthesis of trans-RuCl(C≡CR)(dppe)2 complexes and representative molecular structures. J Organomet Chem 2009, 694, 2350.
         | A simple synthesis of trans-RuCl(C≡CR)(dppe)2 complexes and representative molecular structures.Crossref | GoogleScholarGoogle Scholar |

[45]  R Packheiser, P Ecorchard, B Walfort, H Lang, Heterotrimetallic and heterotetrametallic transition metal complexes. J Organomet Chem 2008, 693, 933.
         | Heterotrimetallic and heterotetrametallic transition metal complexes.Crossref | GoogleScholarGoogle Scholar |

[46]  F Paul, BG Ellis, MI Bruce, L Toupet, T Roisnel, K Costuas, JF Halet, C Lapinte, Bonding and substituent effects in electron-rich mononuclear ruthenium σ-arylacetylides of the formula [(η2-dppe)(η5-C5Me5)Ru(C⋮C)-1,4-(C6H4)X][PF6]n (n = 0, 1; X = NO2, CN, F, H, OMe, NH2). Organometallics 2006, 25, 649.
         | Bonding and substituent effects in electron-rich mononuclear ruthenium σ-arylacetylides of the formula [(η2-dppe)(η5-C5Me5)Ru(C⋮C)-1,4-(C6H4)X][PF6]n (n = 0, 1; X = NO2, CN, F, H, OMe, NH2).Crossref | GoogleScholarGoogle Scholar |

[47]  IY Wu, JT Lin, J Luo, SS Sun, CS Li, KJ Lin, CT Tsai, CC Hsu, JL Lin, Syntheses and reactivity of ruthenium σ-pyridylacetylides. Organometallics 1997, 16, 2038.
         | Syntheses and reactivity of ruthenium σ-pyridylacetylides.Crossref | GoogleScholarGoogle Scholar |

[48]  Q Ge, TSA Hor, Stepwise assembly of linearly-aligned Ru–M–Ru (M = Pd, Pt) heterotrimetallic complexes with σ-4-ethynylpyridine spacer. Dalton Trans 2008, 22, 2929.
         | Stepwise assembly of linearly-aligned Ru–M–Ru (M = Pd, Pt) heterotrimetallic complexes with σ-4-ethynylpyridine spacer.Crossref | GoogleScholarGoogle Scholar |

[49]  R D’Amato, A Furlani, M Colapietro, G Portalone, M Casalboni, M Falconieri, MV Russo, Synthesis, characterisation and optical properties of symmetrical and unsymmetrical Pt(II) and Pd(II) bis-acetylides. Crystal structure of trans-[Pt(PPh3)2(CC–C6H5)(CC–C6H4NO2)]. J Organomet Chem 2001, 627, 13.
         | Synthesis, characterisation and optical properties of symmetrical and unsymmetrical Pt(II) and Pd(II) bis-acetylides. Crystal structure of trans-[Pt(PPh3)2(CC–C6H5)(CC–C6H4NO2)].Crossref | GoogleScholarGoogle Scholar |

[50]  K Sonogashira, Y Fujikura, T Yatake, N Toyoshima, S Takahashi, N Hagihara, Syntheses and properties of cis- and trans-dialkynyl complexes of platinum(II). J Organomet Chem 1978, 145, 101.
         | Syntheses and properties of cis- and trans-dialkynyl complexes of platinum(II).Crossref | GoogleScholarGoogle Scholar |

[51]  H-B Xu, J Ni, K-J Chen, L-Y Zhang, Z-N Chen, Preparation, characterization, and photophysical properties of cis- or trans-PtLn2 (Ln = Nd, Eu, Yb) arrays with 5-ethynyl-2,2′-bipyridine. Organometallics 2008, 27, 5665.
         | Preparation, characterization, and photophysical properties of cis- or trans-PtLn2 (Ln = Nd, Eu, Yb) arrays with 5-ethynyl-2,2′-bipyridine.Crossref | GoogleScholarGoogle Scholar |

[52]  A Gimeno, A Rodríguez-Gimeno, AB Cuenca, C Ramírez de Arellano, M Medio-Simón, G Asensio, Gold(I)-catalysed cascade reactions in the synthesis of 2,3-fused indole derivatives. Chem Commun 2015, 51, 12384.
         | Gold(I)-catalysed cascade reactions in the synthesis of 2,3-fused indole derivatives.Crossref | GoogleScholarGoogle Scholar |

[53]  M Takani, H Masuda, O Yamauchi, Palladium(II) complex formation by indole-3-acetate. Mixed ligand complexes involving a unique spiro-ring formed by cyclopalladation. Inorg Chim Acta 1995, 235, 367.
         | Palladium(II) complex formation by indole-3-acetate. Mixed ligand complexes involving a unique spiro-ring formed by cyclopalladation.Crossref | GoogleScholarGoogle Scholar |

[54]  M Takani, T Takeda, T Yajima, O Yamauchi, Indole rings in palladium(II) complexes. Dual mode of metal binding and aromatic ring stacking causing synanti isomerism. Inorg Chem 2006, 45, 5938.
         | Indole rings in palladium(II) complexes. Dual mode of metal binding and aromatic ring stacking causing synanti isomerism.Crossref | GoogleScholarGoogle Scholar |

[55]  BJ Barrett, VM Iluc, An adaptable chelating diphosphine ligand for the stabilization of palladium and platinum carbenes. Organometallics 2017, 36, 730.
         | An adaptable chelating diphosphine ligand for the stabilization of palladium and platinum carbenes.Crossref | GoogleScholarGoogle Scholar |

[56]  OA Al-Owaedi, S Bock, DC Milan, MC Oerthel, MS Inkpen, DS Yufit, AN Sobolev, NJ Long, T Albrecht, SJ Higgins, MR Bryce, RJ Nichols, CJ Lambert, PJ Low, Insulated molecular wires: Inhibiting orthogonal contacts in metal complex-based molecular junctions. Nanoscale 2017, 9, 9902.
         | Insulated molecular wires: Inhibiting orthogonal contacts in metal complex-based molecular junctions.Crossref | GoogleScholarGoogle Scholar |

[57]  TL Schull, JG Kushmerick, CH Patterson, C George, MH Moore, SK Pollack, R Shashidhar, Ligand effects on charge transport in platinum(II) acetylides. J Am Chem Soc 2003, 125, 3202.
         | Ligand effects on charge transport in platinum(II) acetylides.Crossref | GoogleScholarGoogle Scholar |

[58]  D Touchard, P Haquette, S Guesmi, L LePichon, A Daridor, L Toupet, PH Dixneuf, Vinylidene-, alkynyl-, and trans-bis(alkynyl)ruthenium complexes. Crystal structure of trans-[Ru(NH3)(C⋮C−Ph)(Ph2PCH2CH2PPh2)2]PF6. Organometallics 1997, 16, 3640.
         | Vinylidene-, alkynyl-, and trans-bis(alkynyl)ruthenium complexes. Crystal structure of trans-[Ru(NH3)(C⋮C−Ph)(Ph2PCH2CH2PPh2)2]PF6.Crossref | GoogleScholarGoogle Scholar |

[59]  D Touchard, C Morice, V Cadierno, P Haquette, L Toupet, PH Dixneuf, Novel allenylidene alkynyl and ammonia alkynyl metal complexes via selective synthesis of mono and bis alkynyl ruthenium(II) complexes; crystal structure of trans-[Ru(NH3)(C≡Cph)(Ph2PCH2CH2PPh2)2]PF6. J Chem Soc Chem Comm 1994, 1994, 859.
         | Novel allenylidene alkynyl and ammonia alkynyl metal complexes via selective synthesis of mono and bis alkynyl ruthenium(II) complexes; crystal structure of trans-[Ru(NH3)(C≡Cph)(Ph2PCH2CH2PPh2)2]PF6.Crossref | GoogleScholarGoogle Scholar |

[60]  M Naher, S Bock, ZM Langtry, KM O’Malley, AN Sobolev, BW Skelton, M Korb, PJ Low, Synthesis, structure and physical properties of ‘wire-like’ metal complexes. Organometallics 2020, 39, 4667.
         | Synthesis, structure and physical properties of ‘wire-like’ metal complexes.Crossref | GoogleScholarGoogle Scholar |

[61]  SG Eaves, BW Skelton, PJ Low, Syntheses and molecular structures of trans-bis(alkynyl) tetrakis-triethylphosphite ruthenium complexes. J Organomet Chem 2017, 847, 242.
         | Syntheses and molecular structures of trans-bis(alkynyl) tetrakis-triethylphosphite ruthenium complexes.Crossref | GoogleScholarGoogle Scholar |

[62]  G Albertin, S Autoniutti, E Bordignon, F Cazzaro, S Ianelli, G Pelizzi, Preparation, structure, and reactivity of new bis(acetylide) and acetylide–vinylidene ruthenium(II) complexes stabilized by phosphite ligands. Organometallics 1995, 14, 4114.
         | Preparation, structure, and reactivity of new bis(acetylide) and acetylide–vinylidene ruthenium(II) complexes stabilized by phosphite ligands.Crossref | GoogleScholarGoogle Scholar |

[63]  S Marqués-González, M Parthey, DS Yufit, JAK Howard, M Kaupp, PJ Low, Combined spectroscopic and quantum chemical study of [trans-Ru(C≡CC6H4R1-4)2(dppe)2]n+ and [trans-Ru(C≡CC6H4R1-4)(C≡CC6H4R2-4)(dppe)2]n+ (n = 0, 1) complexes: interpretations beyond the lowest energy conformer paradigm. Organometallics 2014, 33, 4947.
         | Combined spectroscopic and quantum chemical study of [trans-Ru(C≡CC6H4R1-4)2(dppe)2]n+ and [trans-Ru(C≡CC6H4R1-4)(C≡CC6H4R2-4)(dppe)2]n+ (n = 0, 1) complexes: interpretations beyond the lowest energy conformer paradigm.Crossref | GoogleScholarGoogle Scholar |

[64]  MR Bryce, A review of functional linear carbon chains (oligoynes, polyynes, cumulenes) and their applications as molecular wires in molecular electronics and optoelectronics. J Mater Chem C 2021, 9, 10524.
         | A review of functional linear carbon chains (oligoynes, polyynes, cumulenes) and their applications as molecular wires in molecular electronics and optoelectronics.Crossref | GoogleScholarGoogle Scholar |

[65]  CS Casari, M Tommasini, RR Tykwinski, A Milani, Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 2016, 8, 4414.
         | Carbon-atom wires: 1-D systems with tunable properties.Crossref | GoogleScholarGoogle Scholar |

[66]  J Liu, JWY Lam, BZ Tang, Acetylenic polymers: syntheses, structures, and functions. Chem Rev 2009, 109, 5799.
         | Acetylenic polymers: syntheses, structures, and functions.Crossref | GoogleScholarGoogle Scholar |

[67]  AS Hay, Oxidative coupling of acetylenes. II. J Org Chem 1962, 27, 3320.
         | Oxidative coupling of acetylenes. II.Crossref | GoogleScholarGoogle Scholar |

[68]  G Eglinton, AR Galbraith, 182. Macrocyclic acetylenic compounds. Part I. Cyclotetradeca-1:3-diyne and related compounds. J Chem Soc (Resumed) 1959, 1959, 889.
         | 182. Macrocyclic acetylenic compounds. Part I. Cyclotetradeca-1:3-diyne and related compounds.Crossref | GoogleScholarGoogle Scholar |

[69]  C Glaser, Untersuchungen über einige Derivate der Zimmtsäure. [Studies on some derivatives of cinnamic acid.] Justus Liebigs Ann Chem 1870, 154, 137.[In German]
         | Untersuchungen über einige Derivate der Zimmtsäure. [Studies on some derivatives of cinnamic acid.]Crossref | GoogleScholarGoogle Scholar |

[70]  AS Batsanov, JC Collings, IJS Fairlamb, JP Holland, JAK Howard, Z Lin, TB Marder, AC Parsons, RM Ward, J Zhu, Requirement for an oxidant in Pd/Cu co-catalyzed terminal alkyne homocoupling to give symmetrical 1,4-disubstituted 1,3-diynes. J Org Chem 2005, 70, 703.
         | Requirement for an oxidant in Pd/Cu co-catalyzed terminal alkyne homocoupling to give symmetrical 1,4-disubstituted 1,3-diynes.Crossref | GoogleScholarGoogle Scholar |

[71]  M Younus, NJ Long, PR Raithby, J Lewis, Synthetic, spectroscopic and electrochemical characterisation of mixed-metal acetylide complexes. J Organomet Chem 1998, 570, 55.
         | Synthetic, spectroscopic and electrochemical characterisation of mixed-metal acetylide complexes.Crossref | GoogleScholarGoogle Scholar |

[72]  H Masai, K Sonogashira, N Hagihara, Electronic spectra of square-planar bis(tertiary phosphine)dialkynyl complexes of nickel(II), palladium(II), and platinum(II). Bull Chem Soc Jpn 1971, 44, 2226.
         | Electronic spectra of square-planar bis(tertiary phosphine)dialkynyl complexes of nickel(II), palladium(II), and platinum(II).Crossref | GoogleScholarGoogle Scholar |

[73]  MY Choi, MCW Chan, SB Zhang, KK Cheung, CM Che, KY Wong, MLCT and LMCT transitions in acetylide complexes. Structural, spectroscopic, and redox properties of ruthenium(II) and -(III) bis(σ-arylacetylide) complexes supported by a tetradentate macrocyclic tertiary amine ligand. Organometallics 1999, 18, 2074.
         | MLCT and LMCT transitions in acetylide complexes. Structural, spectroscopic, and redox properties of ruthenium(II) and -(III) bis(σ-arylacetylide) complexes supported by a tetradentate macrocyclic tertiary amine ligand.Crossref | GoogleScholarGoogle Scholar |

[74]  CY Wong, CM Che, MCW Chan, J Han, KH Leung, DL Phillips, KY Wong, NY Zhu, Probing ruthenium-acetylide bonding interactions: Synthesis, electrochemistry, and spectroscopic studies of acetylide–ruthenium complexes supported by tetradentate macrocyclic amine and diphosphine ligands. J Am Chem Soc 2005, 127, 13997.
         | Probing ruthenium-acetylide bonding interactions: Synthesis, electrochemistry, and spectroscopic studies of acetylide–ruthenium complexes supported by tetradentate macrocyclic amine and diphosphine ligands.Crossref | GoogleScholarGoogle Scholar |

[75]  CE Powell, MP Cifuentes, AM McDonagh, SK Hurst, NT Lucas, CD Delfs, R Stranger, MG Humphrey, S Houbrechts, I Asselberghs, A Persoons, DCR Hockless, Organometallic complexes for nonlinear optics: Part 27. Syntheses and optical properties of some iron, ruthenium and osmium alkynyl complexes. Inorg Chim Acta 2003, 352, 9.
         | Organometallic complexes for nonlinear optics: Part 27. Syntheses and optical properties of some iron, ruthenium and osmium alkynyl complexes.Crossref | GoogleScholarGoogle Scholar |

[76]  CE Powell, MP Cifuentes, JP Morrall, R Stranger, MG Humphrey, M Samoc, B Luther-Davies, GA Heath, Organometallic complexes for nonlinear optics. 30.1 Electrochromic linear and non-linear optical properties of alkynylbis(diphosphine)ruthenium complexes. J Am Chem Soc 2003, 125, 602.
         | Organometallic complexes for nonlinear optics. 30.1 Electrochromic linear and non-linear optical properties of alkynylbis(diphosphine)ruthenium complexes.Crossref | GoogleScholarGoogle Scholar |

[77]  Holliman PJ, Horton PN, Hursthouse MB. CCDC 1011855: experimental crystal structure determination; 2014.
| Crossref |

[78]  A de Aquino, FJ Caparrós, G Aullón, JS Ward, K Rissanen, Y Jung, H Choi, JC Lima, L Rodríguez, Effect of gold(I) on the room-temperature phosphorescence of ethynylphenanthrene. Chem Eur J 2021, 27, 1810.
         | Effect of gold(I) on the room-temperature phosphorescence of ethynylphenanthrene.Crossref | GoogleScholarGoogle Scholar |

[79]  SK Hurst, NT Lucas, MG Humphrey, T Isoshima, K Wostyn, I Asselberghs, K Clays, A Persoons, M Samoc, B Luther-Davies, Organometallic complexes for non-linear optics. Part 29. Quadratic and cubic hyperpolarizabilities of stilbenylethynyl–gold and -ruthenium complexes. Inorg Chim Acta 2003, 350, 62.
         | Organometallic complexes for non-linear optics. Part 29. Quadratic and cubic hyperpolarizabilities of stilbenylethynyl–gold and -ruthenium complexes.Crossref | GoogleScholarGoogle Scholar |

[80]  WM Khairul, D Albesa-Jové, DS Yufit, MR Al-Haddad, JC Collings, F Hartl, JAK Howard, TB Marder, PJ Low, The syntheses, structures and redox properties of phosphine–gold(I) and triruthenium–carbonyl cluster derivatives of tolans. Inorg Chim Acta 2008, 361, 1646.
         | The syntheses, structures and redox properties of phosphine–gold(I) and triruthenium–carbonyl cluster derivatives of tolans.Crossref | GoogleScholarGoogle Scholar |

[81]  WM Khairul, L Porrès, D Albesa-Jové, MS Senn, M Jones, DP Lydon, JAK Howard, A Beeby, TB Marder, PJ Low, Metal cluster terminated ‘molecular wires’. J Clust Sci 2006, 17, 65.
         | Metal cluster terminated ‘molecular wires’.Crossref | GoogleScholarGoogle Scholar |

[82]  MT González, X Zhao, DZ Manrique, D Miguel, E Leary, M Gulcur, AS Batsanov, G Rubio-Bollinger, CJ Lambert, MR Bryce, N Agraït, Structural versus electrical functionalization of oligo(phenylene ethynylene) diamine molecular junctions. J Phys Chem C 2014, 118, 21655.
         | Structural versus electrical functionalization of oligo(phenylene ethynylene) diamine molecular junctions.Crossref | GoogleScholarGoogle Scholar |

[83]  K Gagnon, S Mohammed Aly, A Brisach-Wittmeyer, D Bellows, J-F Bérubé, L Caron, AS Abd-El-Aziz, D Fortin, PD Harvey, Conjugated oligomers and polymers of cis- and trans-platinum(II)-para- and ortho-bis(ethynylbenzene)quinone diimine. Organometallics 2008, 27, 2201.
         | Conjugated oligomers and polymers of cis- and trans-platinum(II)-para- and ortho-bis(ethynylbenzene)quinone diimine.Crossref | GoogleScholarGoogle Scholar |

[84]  M Mayor, C von Hänisch, HB Weber, J Reichert, D Beckmann, A trans-platinum(II) complex as a single-molecule insulator. Angew Chem Int Ed 2002, 41, 1183.
         | A trans-platinum(II) complex as a single-molecule insulator.Crossref | GoogleScholarGoogle Scholar |

[85]  M Parthey, KB Vincent, M Renz, PA Schauer, DS Yufit, JAK Howard, M Kaupp, PJ Low, A combined computational and spectroelectrochemical study of platinum-bridged bis-triarylamine systems. Inorg Chem 2014, 53, 1544.
         | A combined computational and spectroelectrochemical study of platinum-bridged bis-triarylamine systems.Crossref | GoogleScholarGoogle Scholar |

[86]  M Ravera, R D’Amato, A Guerri, Probing delocalisation across highly ethynylated mono and dinuclear Pt(II) tethers containing nitro groups and organic models as redox active probes: X-ray crystal structure of trans-[Pt(C≡C–C6H4NO2)2(PPh3)2]. J Organomet Chem 2005, 690, 2376.
         | Probing delocalisation across highly ethynylated mono and dinuclear Pt(II) tethers containing nitro groups and organic models as redox active probes: X-ray crystal structure of trans-[Pt(C≡C–C6H4NO2)2(PPh3)2].Crossref | GoogleScholarGoogle Scholar |

[87]  J Vicente, M-T Chicote, MM Alvarez-Falcón, PG Jones, Platinum(II) and mixed platinum(II)/gold(I) σ-alkynyl complexes. The first anionic σ-alkynyl metal polymers. Organometallics 2005, 24, 2764.
         | Platinum(II) and mixed platinum(II)/gold(I) σ-alkynyl complexes. The first anionic σ-alkynyl metal polymers.Crossref | GoogleScholarGoogle Scholar |

[88]  G Zhou, W-Y Wong, S-Y Poon, C Ye, Z Lin, Symmetric versus unsymmetric platinum(II) bis(aryleneethynylene)s with distinct electronic structures for optical power limiting/optical transparency trade-off optimization. Adv Funct Mater 2009, 19, 531.
         | Symmetric versus unsymmetric platinum(II) bis(aryleneethynylene)s with distinct electronic structures for optical power limiting/optical transparency trade-off optimization.Crossref | GoogleScholarGoogle Scholar |

[89]  W Hong, DZ Manrique, P Moreno-García, M Gulcur, A Mishchenko, CJ Lambert, MR Bryce, T Wandlowski, Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J Am Chem Soc 2012, 134, 2292.
         | Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group.Crossref | GoogleScholarGoogle Scholar |

[90]  S Bock, OA Al-Owaedi, SG Eaves, DC Milan, M Lemmer, BW Skelton, HM Osorio, RJ Nichols, SJ Higgins, P Cea, NJ Long, T Albrecht, S Martín, CJ Lambert, PJ Low, Single-molecule conductance studies of organometallic complexes bearing 3-thienyl contacting groups. Chem Eur J 2017, 23, 2133.
         | Single-molecule conductance studies of organometallic complexes bearing 3-thienyl contacting groups.Crossref | GoogleScholarGoogle Scholar |

[91]  MT González, A Díaz, E Leary, R García, MÁ Herranz, G Rubio-Bollinger, N Martín, N Agraït, Stability of single- and few-molecule junctions of conjugated diamines. J Am Chem Soc 2013, 135, 5420.
         | Stability of single- and few-molecule junctions of conjugated diamines.Crossref | GoogleScholarGoogle Scholar |

[92]  KA Velizhanin, TA Zeidan, IV Alabugin, S Smirnov, Single molecule conductance of bipyridyl ethynes: the role of surface binding modes. J Phys Chem B 2010, 114, 14189.
         | Single molecule conductance of bipyridyl ethynes: the role of surface binding modes.Crossref | GoogleScholarGoogle Scholar |

[93]  SY Quek, M Kamenetska, ML Steigerwald, HJ Choi, SG Louie, MS Hybertsen, JB Neaton, L Venkataraman, Mechanically controlled binary conductance switching of a single-molecule junction. Nat Nanotechnol 2009, 4, 230.
         | Mechanically controlled binary conductance switching of a single-molecule junction.Crossref | GoogleScholarGoogle Scholar |

[94]  P Moreno-García, M Gulcur, DZ Manrique, T Pope, W Hong, V Kaliginedi, C Huang, AS Batsanov, MR Bryce, C Lambert, T Wandlowski, Single-molecule conductance of functionalized oligoynes: Length dependence and junction evolution. J Am Chem Soc 2013, 135, 12228.
         | Single-molecule conductance of functionalized oligoynes: Length dependence and junction evolution.Crossref | GoogleScholarGoogle Scholar |

[95]  M Gulcur, P Moreno-García, X Zhao, M Baghernejad, AS Batsanov, W Hong, MR Bryce, T Wandlowski, The synthesis of functionalised diaryltetraynes and their transport properties in single-molecule junctions. Chem Eur J 2014, 20, 4653.
         | The synthesis of functionalised diaryltetraynes and their transport properties in single-molecule junctions.Crossref | GoogleScholarGoogle Scholar |

[96]  HE Skipper, CV May, AL Rheingold, LH Doerrer, M Kamenetska, Hard–soft chemistry design principles for predictive assembly of single molecule–metal junctions. J Am Chem Soc 2021, 143, 16439.
         | Hard–soft chemistry design principles for predictive assembly of single molecule–metal junctions.Crossref | GoogleScholarGoogle Scholar |

[97]  PJ Low, S Bock, Spectroelectrochemistry: a valuable tool for the study of organometallic-alkyne, -vinylidene, -cumulene, -alkynyl and related complexes. Electrochim Acta 2013, 110, 681.
         | Spectroelectrochemistry: a valuable tool for the study of organometallic-alkyne, -vinylidene, -cumulene, -alkynyl and related complexes.Crossref | GoogleScholarGoogle Scholar |

[98]  MA Fox, B Le Guennic, RL Roberts, DA Brue, DS Yufit, JAK Howard, G Manca, JF Halet, F Hartl, PJ Low, Simultaneous bridge-localized and mixed-valence character in diruthenium radical cations featuring diethynylaromatic bridging ligands. J Am Chem Soc 2011, 133, 18433.
         | Simultaneous bridge-localized and mixed-valence character in diruthenium radical cations featuring diethynylaromatic bridging ligands.Crossref | GoogleScholarGoogle Scholar |

[99]  JBG Gluyas, NJ Brown, JD Farmer, PJ Low, Optimised syntheses of the half-sandwich complexes FeCl(dppe)Cp*, FeCl(dppe)Cp, RuCl(dppe)Cp*, and RuCl(dppe)Cp. Aust J Chem 2017, 70, 113.
         | Optimised syntheses of the half-sandwich complexes FeCl(dppe)Cp*, FeCl(dppe)Cp, RuCl(dppe)Cp*, and RuCl(dppe)Cp.Crossref | GoogleScholarGoogle Scholar |

[100]  Bruce MI, Hameister C, Swincer AG, Wallis RC, Ittel SD Chloro(η5-cyclopentadienyl)bis(triphenyl-phosphine) ruthenium(II): RuCl(PPh3)2(C5H5). In: Angelici RJ, editor. Inorganic syntheses. Vol. 28. Wiley; 1990. pp. 270–272.

[101]  CA McAuliffe, RV Parish, PD Randall, Gold(I) complexes of unidentate and bidentate phosphorus-, arsenic-, antimony-, and sulphur-donor ligands. J Chem Soc, Dalton Trans 1979, 1730.
         | Gold(I) complexes of unidentate and bidentate phosphorus-, arsenic-, antimony-, and sulphur-donor ligands.Crossref | GoogleScholarGoogle Scholar |

[102]  A Eisenstadt, R Tannenbaum, A Efraty, Convenient synthetic routes to the cyclopentadienylruthenium dicarbonyl chloride and bromide. J Organomet Chem 1981, 221, 317.
         | Convenient synthetic routes to the cyclopentadienylruthenium dicarbonyl chloride and bromide.Crossref | GoogleScholarGoogle Scholar |

[103]  IM Al-Najjar, 31P and 195Pt NMR characteristics of new binuclear complexes of [Pt2X4](PR3)2] cis/trans isomers and of mononuclear analogs. Inorg Chim Acta 1987, 128, 93.
         | 31P and 195Pt NMR characteristics of new binuclear complexes of [Pt2X4](PR3)2] cis/trans isomers and of mononuclear analogs.Crossref | GoogleScholarGoogle Scholar |

[104]  M Krejčik, M Daněk, F Hartl, Simple construction of an infrared optically transparent thin-layer electrochemical cell: applications to the redox reactions of ferrocene, Mn2(CO)10 and Mn(CO)3(3,5-Di-t-Butyl-Catecholate)−. J Electroanal Chem Interfacial Electrochem 1991, 317, 179.
         | Simple construction of an infrared optically transparent thin-layer electrochemical cell: applications to the redox reactions of ferrocene, Mn2(CO)10 and Mn(CO)3(3,5-Di-t-Butyl-Catecholate).Crossref | GoogleScholarGoogle Scholar |

[105]  BQ Xu, NJJ Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221.
         | Measurement of single-molecule resistance by repeated formation of molecular junctions.Crossref | GoogleScholarGoogle Scholar |

[106]  G Mészáros, C Li, I Pobelov, T Wandlowski, Current measurements in a wide dynamic range – applications in electrochemical nanotechnology. Nanotechnology 2007, 18, 424004.
         | Current measurements in a wide dynamic range – applications in electrochemical nanotechnology.Crossref | GoogleScholarGoogle Scholar |