Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW (Open Access)

Molecular electronics: an Australian perspective

Jeffrey R. Reimers https://orcid.org/0000-0001-5157-7422 A B * and Paul J. Low https://orcid.org/0000-0003-1136-2296 C *
+ Author Affiliations
- Author Affiliations

A International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai, 200444, PR China.

B School of Mathematical and Physical Sciences, University of Technology Sydney, NSW 2007, Australia.

C School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia.




Jeffrey Reimers studied spectroscopy at ANU with Ian Ross and Gad Fischer (1978–79) before studying simulations with Robert Watts (1980–82), and then semiclassical quantum science with Kent Wilson and Eric Heller at the University of California—San Diego during 1983–85. This led to a career in molecular electronics working alongside Noel Hush and Maxwell Crossley at Sydney University from 1985 to 2013, followed by Shanghai University and University of Technology Sydney thenceforth. He is best known for his works in understanding electric-field control of biological photochemical charge separation and the development of computational strategies for modelling single-molecule conductivity and spectroscopy. He is a Fellow of the Royal Australian Chemical Institute, Royal Society of NSW and the Australian Academy of Science.



Paul Low developed his interests in organometallic chemistry and mixed-valence complexes at the University of Adelaide under the tutelage of Michael I. Bruce. Following postdoctoral work at the Steacie Institute of Molecular Sciences with Arthur J. Carty, Paul was appointed to the Department of Chemistry at Durham University (UK) (1999 Lecturer; 2006 Reader; 2010 Professor). In the UK, Paul developed research themes in molecular electronics, with colleagues including Martin Bryce, Richard Nichols and Colin Lambert. Paul returned to Australia and the University of Western Australia in 2013. For his work, he has been awarded EPSRC Leadership (2009) and ARC Future Fellowships (2012), an Alexander von Humboldt Foundation Friedrich Wilhelm Bessel Research Award (2016) and the Royal Australian Chemical Institute’s H. G. Smith Memorial Medal (2020).


Handling Editor: John Wade

Australian Journal of Chemistry 76(9) 559-580 https://doi.org/10.1071/CH23008
Submitted: 10 January 2023  Accepted: 15 June 2023   Published: 12 July 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Molecular electronics is a scientific endeavour that, for 60 years, has offered the promise of new technologies in which molecules integrate with, if not entirely replace, semiconductor electronics. En route to the attainment of these ambitious goals, central aspects underpinning the pursuit of this science have proven critical to the development of related technologies, including organic photovoltaics (OPV) and organic light-emitting diodes (OLEDs). Looking ahead, new opportunities in the field abound, from the study of molecular charge transport and the elucidation of molecular reaction mechanisms, to the development of biocompatible and degradable electronics, and the construction of novel chemical sensors with exquisite sensitivity and specificity. This article reviews historical developments in molecular electronics, with a particular focus on Australia’s contributions to the area. Australia’s current activity in molecular electronics research is also summarised, highlighting the capacity to both advance fundamental knowledge and develop new technologies. Scientific aspects considered include capabilities in: single molecule and molecular–monolayer junction measurement; spectroscopic analysis of molecular components and materials; synthetic chemistry; computational analysis of molecular materials and junctions; and the development of theoretical concepts that describe the electrical characteristics of molecular components, materials and putative device structures. Technological aspects considered include various aspects of molecular material design and implementation, such as: OPV and OLED construction, sensing technologies and applications, and power generation from heat gradients or friction. Missing capabilities are identified, and a future pathway for Australian scientific and technological development envisaged.

Keywords: electron transfer, electron transport, molecular devices, molecular electronics, molecular switches, nanotechnology, organic electronics, technology relevance levels.


References

[1]  R Landauer, IBM J Res Dev 1957, 1, 223.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M Büttiker, Y Imry, R Landauer, S Pinhas, Phys Rev B 1985, 31, 6207.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Lambert CJ. Quantum Transport in Nanostructures and Molecules: An Introduction to Molecular Electronics. Bristol, UK: IOP Publishing; 2021.

[4]  RC Jaklevic, J Lambe, Phys Rev Lett 1966, 17, 1139.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  B Mann, H Kuhn, L Szentpály, Chem Phys Lett 1971, 8, 82.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A Aviram, MA Ratner, Chem Phys Lett 1974, 29, 277.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  NS Hush, J Chem Phys 1958, 28, 962.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Hush NS. Intervalence-transfer absorption. Part 2. Theoretical considerations and spectroscopic data. In: Cotton FA, editor. Progress in Inorganic Chemistry. Vol. 8; Wiley; 1967. pp. 391–444. 10.1002/9780470166093.ch7

[9]  NS Hush, Chem Phys 1975, 10, 361.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Zhong Y-W, Liu CY, Reimers JR. Mixed-Valence Systems: Fundamentals, Synthesis, Electron-Transfer, and Applications. Wiley-VCH; 2023.

[11]  NS Hush, Ann N Y Acad Sci 2003, 1006, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  GB Bacskay, NS Hush, Theor Chim Acta 1974, 32, 311.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  JE Gready, GB Bacskay, NS Hush, Chem Phys 1977, 22, 141.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  NS Hush, AT Wong, GB Bacskay, JR Reimers, J Am Chem Soc 1990, 112, 4192.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J Taylor, H Guo, J Wang, Phys Rev B 2001, 63, 245407.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  AR Rocha, VM García-Suárez, S Bailey, C Lambert, J Ferrer, S Sanvito, Phys Rev B 2006, 73, 085414.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J Ferrer, CJ Lambert, VM García-Suárez, DZ Manrique, D Visontai, L Oroszlany, R Rodríguez-Ferradás, I Grace, SWD Bailey, K Gillemot, H Sadeghi, LA Algharagholy, New J Phys 2014, 16, 093029.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  V Michaud-Rioux, L Zhang, H Guo, J Comput Phys 2016, 307, 593.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  M Brandbyge, J-L Mozos, P Ordejón, J Taylor, K Stokbro, Phys Rev B 2002, 65, 165401.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  JM Warman, MP De Haas, MN Paddon-Row, E Cotsaris, NS Hush, H Oevering, JW Verhoeven, Nature 1986, 320, 615.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  JJ Gooding, S Ciampi, Chem Soc Rev 2011, 40, 2704.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  N Darwish, PK Eggers, S Ciampi, Y Tong, S Ye, MN Paddon-Row, JJ Gooding, J Am Chem Soc 2012, 134, 18401.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  N Darwish, I Díez-Pérez, P Da Silva, N Tao, JJ Gooding, MN Paddon-Row, Angew Chem Int Ed 2012, 51, 3203.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  N Darwish, I Díez-Pérez, S Guo, N Tao, JJ Gooding, MN Paddon-Row, J Phys Chem C 2012, 116, 21093.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  LE Hall, JR Reimers, NS Hush, K Silverbrook, J Chem Phys 2000, 112, 1510.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  Reimers JR, Hush NS. Electric field perturbation of electronic (vibronic) absorption envelopes: application to characterization of mixed-valence states. In: Prassides K, editor. Mixed Valency Systems: Applications in Chemistry, Physics and Biology. Dordrecht, Netherlands: Kluwer Acad. Publishers; 1991. pp. 29–50. 10.1007/978-94-011-3606-8

[27]  NS Hush, JR Reimers, J Phys Chem 1995, 99, 15798.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  JR Reimers, J Zeng, NS Hush, J Phys Chem 1996, 100, 1498.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  JR Reimers, NS Hush, J Phys Chem A 1999, 103, 10580.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  JR Reimers, JM Hughes, NS Hush, Biochemistry 2000, 39, 16185.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  JR Reimers, NS Hush, J Am Chem Soc 2004, 126, 4132.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  P Kanchanawong, MG Dahlbom, TP Treynor, JR Reimers, NS Hush, SG Boxer, J Phys Chem B 2006, 110, 18688.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  GC Solomon, A Gagliardi, A Pecchia, T Frauenheim, A Di Carlo, JR Reimers, NS Hush, J Chem Phys 2006, 124, 094704.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  GC Solomon, DQ Andrews, RH Goldsmith, T Hansen, MR Wasielewski, RP Van Duyne, MA Ratner, J Am Chem Soc 2008, 130, 17301.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  GC Solomon, DQ Andrews, T Hansen, RH Goldsmith, MR Wasielewski, RP Van Duyne, MA Ratner, J Chem Phys 2008, 129, 054701.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  GC Solomon, C Herrmann, T Hansen, V Mujica, MA Ratner, Nat Chem 2010, 2, 223.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  MJ Crossley, PL Burn, J Chem Soc Chem Commun 1987, 1987, 39.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  JR Reimers, TX Lü, MJ Crossley, NS Hush, Chem Phys Lett 1996, 256, 353.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  MJ Crossley, PL Burn, J Chem Soc Chem Commun 1991, 1991, 1569.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  T Khoury, MJ Crossley, Chem Commun 2007, 2007, 4851.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  MJ Crossley, PL Burn, SJ Langford, JK Prashar, J Chem Soc Chem Commun 1995, 1995, 1921.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  MJ Crossley, LJ Govenlock, JK Prashar, J Chem Soc Chem Commun 1995, 1995, 2379.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  MJ Crossley, LA Johnston, Chem Commun 2002, 2002, 1122.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  MJ Crossley, PJ Sintic, R Walton, JR Reimers, Org Biomol Chem 2003, 1, 2777.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  MJ Crossley, PJ Sintic, JA Hutchison, KP Ghiggino, Org Biomol Chem 2005, 3, 852.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  K Ohkubo, PJ Sintic, NV Tkachenko, H Lemmetyinen, E Wenbo, Z Ou, J Shao, KM Kadish, MJ Crossley, S Fukuzumi, Chem Phys 2006, 326, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  S-H Lee, IM Blake, AG Larsen, JA McDonald, K Ohkubo, S Fukuzumi, JR Reimers, MJ Crossley, Chem Sci 2016, 7, 6534.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  S-H Lee, AG Larsen, K Ohkubo, Z-L Cai, JR Reimers, S Fukuzumi, MJ Crossley, Chem Sci 2012, 3, 257.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  E Wendo, KM Kadish, PJ Sintic, T Khoury, LJ Govenlock, Z Ou, J Shao, K Ohkubo, JR Reimers, S Fukuzumi, MJ Crossley, J Phys Chem A 2008, 112, 556.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  NA Lambropoulos, JR Reimers, MJ Crossley, NS Hush, K Silverbrook, Nanotechnology 2013, 24, 505202.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  RA Binstead, MJ Crossley, NS Hush, Inorg Chem 1991, 30, 1259.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  JR Reimers, LE Hall, MJ Crossley, NS Hush, J Phys Chem A 1999, 103, 4385.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  TX Lü, JR Reimers, MJ Crossley, NS Hush, J Phys Chem 1994, 98, 11878.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  WWH Wong, T Khoury, D Vak, C Yan, DJ Jones, MJ Crossley, AB Holmes, J Mater Chem 2010, 20, 7005.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  J Larsen, B Brüggemann, T Polívka, V Sundström, E Åkesson, J Sly, MJ Crossley, J Phys Chem A 2005, 109, 10654.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  YY Cheng, B Fückel, RW MacQueen, T Khoury, RGCR Clady, TF Schulze, NJ Ekins-Daukes, MJ Crossley, B Stannowski, K Lips, TW Schmidt, Energy Environ Sci 2012, 5, 6953.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  YY Cheng, T Khoury, RGCR Clady, MJY Tayebjee, NJ Ekins-Daukes, MJ Crossley, TW Schmidt, Phys Chem Chem Phys 2010, 12, 66.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  CB Dover, JK Gallaher, L Frazer, PC Tapping, AJ Petty, MJ Crossley, JE Anthony, TW Kee, TW Schmidt, Nat Chem 2018, 10, 305.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  K Sendt, LA Johnston, WA Hough, MJ Crossley, NS Hush, JR Reimers, J Am Chem Soc 2002, 124, 9299.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  M Li, R Kobayashi, RD Amos, MJ Ford, JR Reimers, Chem Sci 2022, 13, 1492.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  JR Reimers, Z-L Cai, R Kobayashi, M Rätsep, A Freiberg, E Krausz, Sci Rep 2013, 3, 2761.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  Z-L Cai, MJ Crossley, JR Reimers, R Kobayashi, RD Amos, J Phys Chem B 2006, 110, 15624.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  PL Burn, AB Holmes, A Kraft, DDC Bradley, AR Brown, RH Friend, RW Gymer, Nature 1992, 356, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  SC Lo, PL Burn, Chem Rev 2007, 107, 1097.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  PL Burn, SC Lo, IDW Samuel, Adv Mater 2007, 19, 1675.
         | Crossref | GoogleScholarGoogle Scholar |

[66]  Q Lin, A Armin, RCR Nagiri, PL Burn, P Meredith, Nat Photon 2015, 9, 106.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  M Stolterfoht, CM Wolff, JA Márquez, S Zhang, CJ Hages, D Rothhardt, S Albrecht, PL Burn, P Meredith, T Unold, D Neher, Nat Energy 2018, 3, 847.
         | Crossref | GoogleScholarGoogle Scholar |

[68]  RD Jansen-van Vuuren, A Armin, AK Pandey, PL Burn, P Meredith, Adv Mater 2016, 28, 4766.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  Q Lin, A Armin, PL Burn, P Meredith, Nat Photon 2015, 9, 687.
         | Crossref | GoogleScholarGoogle Scholar |

[70]  K Sun, Z Xiao, S Lu, W Zajaczkowski, W Pisula, E Hanssen, JM White, RM Williamson, J Subbiah, J Ouyang, AB Holmes, WWH Wong, DJ Jones, Nat Commun 2015, 6, 6013.
         | Crossref | GoogleScholarGoogle Scholar |

[71]  WWH Wong, JL Banal, PB Geraghty, Q Hong, B Zhang, AB Holmes, DJ Jones, Chem Rec 2015, 15, 1006.
         | Crossref | GoogleScholarGoogle Scholar |

[72]  NC Nicolaidis, PV Hollott, B Stanwell, IA Gill, JE Bull, S Bentsen, J Iredale, TM Pappenfus, PC Dastoor, K Feron, MJ Griffith, NP Holmes, J Chem Educ 2020, 97, 3751.
         | Crossref | GoogleScholarGoogle Scholar |

[73]  JA Posar, J Davis, S Alnaghy, D Wilkinson, S Cottam, DM Lee, KL Thompson, NP Holmes, M Barr, A Fahy, NC Nicolaidis, F Louie, B Fraboni, PJ Sellin, MLF Lerch, AB Rosenfeld, M Petasecca, MJ Griffith, Adv Mater Technol 2021, 6, 2001298.
         | Crossref | GoogleScholarGoogle Scholar |

[74]  R Corkish, MA Green, AW Blakers, PL Burn, Y-B Cheng, R Egan, KP Ghiggino, P Meredith, FH Scholes, G Wilson, Mater Res Soc Symp Proc 2015, 1771, 33.
         | Crossref | GoogleScholarGoogle Scholar |

[75]  DP Arnold, GA Heath, J Am Chem Soc 1993, 115, 12197.
         | Crossref | GoogleScholarGoogle Scholar |

[76]  DP Arnold, RD Hartnell, GA Heath, L Newby, RD Webster, Chem Commun 2002, 2, 754.
         | Crossref | GoogleScholarGoogle Scholar |

[77]  DP Arnold, GA Heath, DA James, J Porphyr Phthalocyanines 1999, 3, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[78]  DM D’Alessandro, FR Keene, Chem Rev 2006, 106, 2270.
         | Crossref | GoogleScholarGoogle Scholar |

[79]  DM D’Alessandro, FR Keene, Chem Soc Rev 2006, 35, 424.
         | Crossref | GoogleScholarGoogle Scholar |

[80]  DM D’Alessandro, FR Keene, Pure Appl Chem 2008, 80, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[81]  DM D’Alessandro, PC Junk, F Richard Keene, Supramol Chem 2005, 17, 529.
         | Crossref | GoogleScholarGoogle Scholar |

[82]  DM D’Alessandro, PH Dinolfo, MS Davies, JT Hupp, FR Keene, Inorg Chem 2006, 45, 3261.
         | Crossref | GoogleScholarGoogle Scholar |

[83]  DM D’Alessandro, PH Dinolfo, MS Davies, JT Hupp, FR Keene, Inorg Chem 2006, 45, 4576.
         | Crossref | GoogleScholarGoogle Scholar |

[84]  DM D’Alessandro, F Richard Keene, Dalton Trans 2006, 2006, 1060.
         | Crossref | GoogleScholarGoogle Scholar |

[85]  DM D’Alessandro, MS Davies, FR Keene, Inorg Chem 2006, 45, 1656.
         | Crossref | GoogleScholarGoogle Scholar |

[86]  MI Bruce, PJ Low, K Costuas, JF Halet, SP Best, GA Heath, J Am Chem Soc 2000, 122, 1949.
         | Crossref | GoogleScholarGoogle Scholar |

[87]  M Parthey, JBG Gluyas, PA Schauer, DS Yufit, JAK Howard, M Kaupp, PJ Low, Chem Eur J 2013, 19, 9780.
         | Crossref | GoogleScholarGoogle Scholar |

[88]  M Parthey, JBG Gluyas, MA Fox, PJ Low, M Kaupp, Chem Eur J 2014, 20, 6895.
         | Crossref | GoogleScholarGoogle Scholar |

[89]  JBG Gluyas, S Gückel, M Kaupp, PJ Low, Chem Eur J 2016, 22, 16138.
         | Crossref | GoogleScholarGoogle Scholar |

[90]  Naher M, Roemer M, Koutsantonis GA, Low PJ. 9.03 – Metal complexes for molecular electronics. In: Constable EC, Parkin G, Que Jr L, editors. Comprehensive Coordination Chemistry III. Elsevier; 2021. pp. 38–80.
| Crossref |

[91]  R Murase, CF Leong, DM D’Alessandro, Inorg Chem 2017, 56, 14373.
         | Crossref | GoogleScholarGoogle Scholar |

[92]  H Park, AKL Lim, AP Alivisatos, J Park, PL McEuen, Appl Phys Lett 1999, 75, 301.
         | Crossref | GoogleScholarGoogle Scholar |

[93]  HX He, S Boussaad, BQ Xu, CZ Li, NJ Tao, J Electroanal Chem 2002, 522, 167.
         | Crossref | GoogleScholarGoogle Scholar |

[94]  X Chen, YM Jeon, JW Jang, L Qin, F Huo, W Wei, CA Mirkin, J Am Chem Soc 2008, 130, 8166.
         | Crossref | GoogleScholarGoogle Scholar |

[95]  MA Reed, C Zhou, CJ Muller, TP Burgin, JM Tour, Science 1997, 278, 252.
         | Crossref | GoogleScholarGoogle Scholar |

[96]  B Xu, NJ Tao, Science 2003, 301, 1221.
         | Crossref | GoogleScholarGoogle Scholar |

[97]  W Haiss, H Van Zalinge, SJ Higgins, D Bethell, H Höbenreich, DJ Schiffrin, RJ Nichols, J Am Chem Soc 2003, 125, 15294.
         | Crossref | GoogleScholarGoogle Scholar |

[98]  W Haiss, RJ Nichols, H Van Zalinge, SJ Higgins, D Bethell, DJ Schiffrin, Phys Chem Chem Phys 2004, 6, 4330.
         | Crossref | GoogleScholarGoogle Scholar |

[99]  AC Aragonès, N Darwish, S Ciampi, F Sanz, JJ Gooding, I Díez-Pérez, Nat Commun 2017, 8, 15056.
         | Crossref | GoogleScholarGoogle Scholar |

[100]  CR Peiris, YB Vogel, AP Le Brun, AC Aragonès, ML Coote, I Díez-Pérez, S Ciampi, N Darwish, J Am Chem Soc 2019, 141, 14788.
         | Crossref | GoogleScholarGoogle Scholar |

[101]  E Gorenskaia, M Naher, L Daukiya, SA Moggach, D Costa Milan, A Vezzoli, CJ Lambert, RJ Nichols, T Becker, PJ Low, Aust J Chem 2021, 74, 806.
         | Crossref | GoogleScholarGoogle Scholar |

[102]  M Naher, E Gorenskaia, SA Moggach, T Becker, RJ Nichols, CJ Lambert, PJ Low, Aust J Chem 2022, 75, 506.
         | Crossref | GoogleScholarGoogle Scholar |

[103]  M Héder, Innov J 2017, 22, 1.

[104]  AC Aragonès, NL Haworth, N Darwish, S Ciampi, NJ Bloomfield, GG Wallace, I Diez-Perez, ML Coote, Nature 2016, 531, 88.
         | Crossref | GoogleScholarGoogle Scholar |

[105]  L Zhang, E Laborda, N Darwish, BB Noble, JH Tyrell, S Pluczyk, AP Le Brun, GG Wallace, J Gonzalez, ML Coote, S Ciampi, J Am Chem Soc 2018, 140, 766.
         | Crossref | GoogleScholarGoogle Scholar |

[106]  YB Vogel, L Zhang, N Darwish, VR Gonçales, A Le Brun, JJ Gooding, A Molina, GG Wallace, ML Coote, J Gonzalez, S Ciampi, Nat Commun 2017, 8, 2066.
         | Crossref | GoogleScholarGoogle Scholar |

[107]  J Zhang, FJM Rogers, N Darwish, VR Gonçales, YB Vogel, F Wang, JJ Gooding, MCR Peiris, G Jia, J-P Veder, ML Coote, S Ciampi, J Am Chem Soc 2019, 141, 5863.
         | Crossref | GoogleScholarGoogle Scholar |

[108]  YB Vogel, CW Evans, M Belotti, L Xu, IC Russell, LJ Yu, AKK Fung, NS Hill, N Darwish, VR Gonçales, ML Coote, K Swaminathan Iyer, S Ciampi, Nat Commun 2020, 11, 6323.
         | Crossref | GoogleScholarGoogle Scholar |

[109]  AA Dzhioev, DS Kosov, J Chem Phys 2011, 134, 044121.
         | Crossref | GoogleScholarGoogle Scholar |

[110]  MF Gelin, DS Kosov, J Chem Phys 2021, 154, 044107.
         | Crossref | GoogleScholarGoogle Scholar |

[111]  MD Peeks, TDW Claridge, HL Anderson, Nature 2017, 541, 200.
         | Crossref | GoogleScholarGoogle Scholar |

[112]  M Rickhaus, M Jirasek, L Tejerina, H Gotfredsen, MD Peeks, R Haver, HW Jiang, TDW Claridge, HL Anderson, Nat Chem 2020, 12, 236.
         | Crossref | GoogleScholarGoogle Scholar |

[113]  D Bradley, CP Branley, MD Peeks, Phys Chem Chem Phys 2022, 24, 11486.
         | Crossref | GoogleScholarGoogle Scholar |

[114]  JR Reimers, GC Solomon, A Gagliardi, A Bilić, NS Hush, T Frauenheim, A Di Carlo, A Pecchia, J Phys Chem A 2007, 111, 5692.
         | Crossref | GoogleScholarGoogle Scholar |

[115]  B Hourahine, B Aradi, V Blum, F Bonafé, A Buccheri, C Camacho, C Cevallos, MY Deshaye, T Dumitrică, A Dominguez, S Ehlert, M Elstner, T Van Der Heide, J Hermann, S Irle, JJ Kranz, C Köhler, T Kowalczyk, T Kubař, IS Lee, V Lutsker, RJ Maurer, SK Min, I Mitchell, C Negre, TA Niehaus, AMN Niklasson, AJ Page, A Pecchia, G Penazzi, MP Persson, J Řezáč, CG Sánchez, M Sternberg, M Stöhr, F Stuckenberg, A Tkatchenko, VW-z Yu, T Frauenheim, J Chem Phys 2020, 152, 124101.
         | Crossref | GoogleScholarGoogle Scholar |

[116]  I Mitchell, B Aradi, AJ Page, J Comput Chem 2018, 39, 2452.
         | Crossref | GoogleScholarGoogle Scholar |

[117]  B McLean, GB Webber, AJ Page, J Am Chem Soc 2019, 141, 13385.
         | Crossref | GoogleScholarGoogle Scholar |

[118]  LP Ding, B McLean, Z Xu, X Kong, D Hedman, L Qiu, AJ Page, F Ding, J Am Chem Soc 2022, 144, 5606.
         | Crossref | GoogleScholarGoogle Scholar |

[119]  M Roemer, A Gillespie, D Jago, D Costa-Milan, J Alqahtani, J Hurtado-Gallego, H Sadeghi, CJ Lambert, PR Spackman, AN Sobolev, BW Skelton, A Grosjean, M Walkey, S Kampmann, A Vezzoli, PV Simpson, M Massi, I Planje, G Rubio-Bollinger, N Agraït, SJ Higgins, S Sangtarash, MJ Piggott, RJ Nichols, GA Koutsantonis, J Am Chem Soc 2022, 144, 12698.
         | Crossref | GoogleScholarGoogle Scholar |

[120]  T Tezgerevska, KG Alley, C Boskovic, Coord Chem Rev 2014, 268, 23.
         | Crossref | GoogleScholarGoogle Scholar |

[121]  MA Hay, JT Janetzki, VJ Kumar, RW Gable, R Clérac, AA Starikova, PJ Low, C Boskovic, Inorg Chem 2022, 61, 17609.
         | Crossref | GoogleScholarGoogle Scholar |

[122]  LQ Pei, JR Horsley, JW Seng, X Liu, YQ Yeoh, MX Yu, XH Wu, AD Abell, JF Zheng, XS Zhou, J Yu, S Jin, ACS Appl Mater Interfaces 2021, 13, 57646.
         | Crossref | GoogleScholarGoogle Scholar |

[123]  X Chen, M Roemer, L Yuan, W Du, D Thompson, E Del Barco, CA Nijhuis, Nat Nanotechnol 2017, 12, 797.
         | Crossref | GoogleScholarGoogle Scholar |

[124]  P Song, S Guerin, SJR Tan, HV Annadata, X Yu, M Scully, YM Han, M Roemer, KP Loh, D Thompson, CA Nijhuis, Adv Mater 2018, 30, 1706322.
         | Crossref | GoogleScholarGoogle Scholar |

[125]  M Roemer, B Donnadieu, CA Nijhuis, Eur J Inorg Chem 2016, 2016, 1314.
         | Crossref | GoogleScholarGoogle Scholar |

[126]  M Roemer, ST Keaveney, N Proschogo, J Org Chem 2021, 86, 9007.
         | Crossref | GoogleScholarGoogle Scholar |

[127]  M Roemer, I Luck, N Proschogo, Adv Synth Catal 2022, 364, 2957.
         | Crossref | GoogleScholarGoogle Scholar |

[128]  M Naher, DC Milan, OA Al-Owaedi, IJ Planje, S Bock, J Hurtado-Gallego, P Bastante, ZM Abd Dawood, L Rincón-García, G Rubio-Bollinger, SJ Higgins, N Agraït, CJ Lambert, RJ Nichols, PJ Low, J Am Chem Soc 2021, 143, 3817.
         | Crossref | GoogleScholarGoogle Scholar |

[129]  G Puebla-Hellmann, K Venkatesan, M Mayor, E Lörtscher, Nature 2018, 559, 232.
         | Crossref | GoogleScholarGoogle Scholar |

[130]  A Singh, A Wolff, SD Yambem, M Esmaeili, JD Riches, M Shahbazi, K Feron, E Eftekhari, K Ostrikov, Q Li, P Sonar, Adv Mater 2020, 32, 1906176.
         | Crossref | GoogleScholarGoogle Scholar |

[131]  S Yuvaraja, A Nawaz, Q Liu, D Dubal, SG Surya, KN Salama, P Sonar, Chem Soc Rev 2020, 49, 3423.
         | Crossref | GoogleScholarGoogle Scholar |

[132]  J Yu, JR Horsley, AD Abell, Phys Chem Chem Phys 2020, 22, 8409.
         | Crossref | GoogleScholarGoogle Scholar |

[133]  JR Horsley, J Yu, KL Wegener, C Hoppmann, K Rück-Braun, AD Abell, Biosens Bioelectron 2018, 118, 188.
         | Crossref | GoogleScholarGoogle Scholar |

[134]  MJ Griffith, NP Holmes, DC Elkington, S Cottam, J Stamenkovic, ALD Kilcoyne, TR Andersen, Nanotechnology 2020, 31, 092002.
         | Crossref | GoogleScholarGoogle Scholar |

[135]  A Schiffrin, T Paasch-Colberg, N Karpowicz, V Apalkov, D Gerster, S Mühlbrandt, M Korbman, J Reichert, M Schultze, S Holzner, JV Barth, R Kienberger, R Ernstorfer, VS Yakovlev, MI Stockman, F Krausz, Nature 2013, 493, 70.
         | Crossref | GoogleScholarGoogle Scholar |

[136]  A Schiffrin, M Capsoni, G Farahi, CG Wang, C Krull, M Castelli, T Roussy, KA Cochrane, Y Yin, NV Medhekar, M Fuhrer, AQ Shaw, W Ji, SA Burke, ACS Nano 2018, 12, 6545.
         | Crossref | GoogleScholarGoogle Scholar |

[137]  D Kumar, C Krull, Y Yin, NV Medhekar, A Schiffrin, ACS Nano 2019, 13, 11882.
         | Crossref | GoogleScholarGoogle Scholar |

[138]  MJ Griffith, K Sunahara, P Wagner, K Wagner, GG Wallace, DL Officer, A Furube, R Katoh, S Mori, AJ Mozer, Chem Commun 2012, 48, 4145.
         | Crossref | GoogleScholarGoogle Scholar |

[139]  MG Barr, S Chambon, A Fahy, TW Jones, MA Marcus, ALD Kilcoyne, PC Dastoor, MJ Griffith, NP Holmes, Mater Chem Front 2021, 5, 2218.
         | Crossref | GoogleScholarGoogle Scholar |

[140]  XL Shi, J Zou, ZG Chen, Chem Rev 2020, 120, 7399.
         | Crossref | GoogleScholarGoogle Scholar |

[141]  T Cao, XL Shi, ZG Chen, Prog Mater Sci 2023, 131, 101003.
         | Crossref | GoogleScholarGoogle Scholar |

[142]  L Zhang, B Xia, XL Shi, WD Liu, Y Yang, X Hou, X Ye, G Suo, ZG Chen, Carbon 2022, 196, 718.
         | Crossref | GoogleScholarGoogle Scholar |

[143]  X Lyu, S Ferrie, A Pivrikas, M MacGregor, S Ciampi, Nano Energy 2022, 102, 107658.
         | Crossref | GoogleScholarGoogle Scholar |

[144]  S Ferrie, N Darwish, JJ Gooding, S Ciampi, Nano Energy 2020, 78, 105210.
         | Crossref | GoogleScholarGoogle Scholar |

[145]  T Maganti, K Venkatesan, ChemPlusChem 2022, 87, e202200014.
         | Crossref | GoogleScholarGoogle Scholar |

[146]  R Malmberg, K Venkatesan, Eur J Inorg Chem 2021, 2021, 4890.
         | Crossref | GoogleScholarGoogle Scholar |

[147]  R Malmberg, K Venkatesan, Coord Chem Rev 2021, 449, 214182.
         | Crossref | GoogleScholarGoogle Scholar |

[148]  R Malmberg, T von Arx, M Hasan, O Blacque, A Shukla, SKM McGregor, SC Lo, EB Namdas, K Venkatesan, Chem Eur J 2021, 27, 7265.
         | Crossref | GoogleScholarGoogle Scholar |

[149]  Y Zhang, O Blacque, K Venkatesan, Chem Eur J 2013, 19, 15689.
         | Crossref | GoogleScholarGoogle Scholar |

[150]  Z Gan, X Wen, W Chen, C Zhou, S Yang, G Cao, KP Ghiggino, H Zhang, B Jia, Adv Energy Mater 2019, 9, 1900185.
         | Crossref | GoogleScholarGoogle Scholar |

[151]  F Zheng, CR Hall, D Angmo, C Zuo, S Rubanov, Z Wen, SJ Bradley, X-T Hao, M Gao, TA Smith, KP Ghiggino, J Mater Chem C 2021, 9, 5362.
         | Crossref | GoogleScholarGoogle Scholar |

[152]  W Mao, CR Hall, S Bernardi, Y-B Cheng, A Widmer-Cooper, TA Smith, U Bach, Nat Mater 2021, 20, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[153]  C Gao, SKK Prasad, B Zhang, M Dvořák, MJY Tayebjee, DR McCamey, TW Schmidt, TA Smith, WWH Wong, J Phys Chem C 2019, 123, 20181.
         | Crossref | GoogleScholarGoogle Scholar |

[154]  JL Banal, B Zhang, DJ Jones, KP Ghiggino, WWH Wong, Acc Chem Res 2017, 50, 49.
         | Crossref | GoogleScholarGoogle Scholar |

[155]  M El Gemayel, K Börjesson, M Herder, DT Duong, JA Hutchison, C Ruzié, G Schweicher, A Salleo, Y Geerts, S Hecht, E Orgiu, P Samorì, Nat Commun 2015, 6, 6330.
         | Crossref | GoogleScholarGoogle Scholar |

[156]  MJY Tayebjee, SN Sanders, E Kumarasamy, LM Campos, MY Sfeir, DR McCamey, Nat Phys 2017, 13, 182.
         | Crossref | GoogleScholarGoogle Scholar |

[157]  E Kumarasamy, SN Sanders, MJY Tayebjee, A Asadpoordarvish, TJH Hele, EG Fuemmeler, AB Pun, LM Yablon, JZ Low, DW Paley, JC Dean, B Choi, GD Scholes, ML Steigerwald, N Ananth, DR McCamey, MY Sfeir, LM Campos, J Am Chem Soc 2017, 139, 12488.
         | Crossref | GoogleScholarGoogle Scholar |

[158]  AB Pun, A Asadpoordarvish, E Kumarasamy, MJY Tayebjee, D Niesner, DR McCamey, SN Sanders, LM Campos, MY Sfeir, Nat Chem 2019, 11, 821.
         | Crossref | GoogleScholarGoogle Scholar |

[159]  CR Peiris, S Ciampi, EM Dief, J Zhang, PJ Canfield, AP Le Brun, DS Kosov, JR Reimers, N Darwish, Chem Sci 2020, 11, 5246.
         | Crossref | GoogleScholarGoogle Scholar |

[160]  JR Reimers, J Yang, N Darwish, DS Kosov, Chem Sci 2021, 12, 15870.
         | Crossref | GoogleScholarGoogle Scholar |

[161]  F Jiang, DI Trupp, N Algethami, H Zheng, W He, A Alqorashi, C Zhu, C Tang, R Li, J Liu, H Sadeghi, J Shi, R Davidson, M Korb, AN Sobolev, M Naher, S Sangtarash, PJ Low, W Hong, CJ Lambert, Angew Chem Int Ed 2019, 58, 18987.
         | Crossref | GoogleScholarGoogle Scholar |

[162]  DP Harrison, R Grotjahn, M Naher, SMBH Ghazvini, DM Mazzucato, M Korb, SA Moggach, C Lambert, M Kaupp, PJ Low, Angew Chem Int Ed 2022, 61, e202211000.
         | Crossref | GoogleScholarGoogle Scholar |

[163]  E Gorenskaia, KL Turner, S Martín, P Cea, PJ Low, Nanoscale 2021, 13, 9055.
         | Crossref | GoogleScholarGoogle Scholar |

[164]  JT Janetzki, FZM Zahir, RW Gable, W Phonsri, KS Murray, L Goerigk, C Boskovic, Inorg Chem 2021, 60, 14475.
         | Crossref | GoogleScholarGoogle Scholar |

[165]  AC Aragonès, N Darwish, S Ciampi, L Jiang, R Roesch, E Ruiz, CA Nijhuis, I Díez-Pérez, J Am Chem Soc 2019, 141, 240.
         | Crossref | GoogleScholarGoogle Scholar |

[166]  MC Walkey, CR Peiris, S Ciampi, AC Aragonès, RB Domínguez-Espíndola, D Jago, T Pulbrook, BW Skelton, AN Sobolev, I Díez Pérez, MJ Piggott, GA Koutsantonis, N Darwish, ACS Appl Mater Interfaces 2019, 11, 36886.
         | Crossref | GoogleScholarGoogle Scholar |

[167]  D Kumar, J Hellerstedt, B Field, B Lowe, Y Yin, NV Medhekar, A Schiffrin, Adv Funct Mater 2021, 31, 2106474.
         | Crossref | GoogleScholarGoogle Scholar |

[168]  J Hellerstedt, M Castelli, A Tadich, A Grubišić-Čabo, D Kumar, B Lowe, S Gicev, D Potamianos, M Schnitzenbaumer, P Scigalla, S Ghan, R Kienberger, M Usman, A Schiffrin, Nanoscale Adv 2022, 4, 3845.
         | Crossref | GoogleScholarGoogle Scholar |

[169]  M Castelli, J Hellerstedt, C Krull, S Gicev, LCL Hollenberg, M Usman, A Schiffrin, Small 2021, 17, 2005974.
         | Crossref | GoogleScholarGoogle Scholar |

[170]  L Zhang, MG Humphrey, Coord Chem Rev 2022, 473, 214820.
         | Crossref | GoogleScholarGoogle Scholar |

[171]  S Ferrie, AP Le Brun, G Krishnan, GG Andersson, N Darwish, S Ciampi, Nano Energy 2022, 93, 106861.
         | Crossref | GoogleScholarGoogle Scholar |

[172]  EM Dief, N Darwish, ACS Sens 2021, 6, 573.
         | Crossref | GoogleScholarGoogle Scholar |

[173]  A Krull, P Hirsch, C Rother, A Schiffrin, C Krull, Commun Phys 2020, 3, 54.
         | Crossref | GoogleScholarGoogle Scholar |

[174]  C Krull, M Castelli, P Hapala, D Kumar, A Tadich, M Capsoni, MT Edmonds, J Hellerstedt, SA Burke, P Jelinek, A Schiffrin, Nat Commun 2018, 9, 3211.
         | Crossref | GoogleScholarGoogle Scholar |

[175]  S Naghibi, S Sangtarash, VJ Kumar, JZ Wu, MM Judd, X Qiao, E Gorenskaia, SJ Higgins, N Cox, RJ Nichols, H Sadeghi, PJ Low, A Vezzoli, Angew Chem Int Ed 2022, 61, e202116985.
         | Crossref | GoogleScholarGoogle Scholar |

[176]  A Martín-Barreiro, R Soto, S Chiodini, A García-Serrano, S Martín, L Herrer, F Pérez-Murano, PJ Low, JL Serrano, S de Marcos, J Galban, P Cea, Adv Mater Interfaces 2021, 8, 2100876.
         | Crossref | GoogleScholarGoogle Scholar |

[177]  R Ezquerra, SG Eaves, S Bock, BW Skelton, F Pérez-Murano, P Cea, S Martín, PJ Low, J Mater Chem C 2019, 7, 6630.
         | Crossref | GoogleScholarGoogle Scholar |

[178]  S Sangiao, S Martín, A González-Orive, C Magén, PJ Low, JM De Teresa, P Cea, Small 2017, 13, 1603207.
         | Crossref | GoogleScholarGoogle Scholar |

[179]  M Belotti, MMT El-Tahawy, L-J Yu, IC Russell, N Darwish, ML Coote, M Garavelli, S Ciampi, Angew Chem Int Ed 2022, 61, e202209670.
         | Crossref | GoogleScholarGoogle Scholar |

[180]  SJ Bradley, M Chi, JM White, CR Hall, L Goerigk, TA Smith, KP Ghiggino, Phys Chem Chem Phys 2021, 23, 9357.
         | Crossref | GoogleScholarGoogle Scholar |

[181]  KN Schwarz, PB Geraghty, VD Mitchell, SUZ Khan, OJ Sandberg, N Zarrabi, B Kudisch, J Subbiah, TA Smith, BP Rand, A Armin, GD Scholes, DJ Jones, KP Ghiggino, J Am Chem Soc 2020, 142, 2562.
         | Crossref | GoogleScholarGoogle Scholar |

[182]  DA Smith, G McKenzie, AC Jones, TA Smith, Methods Appl Fluoresc 2017, 5, 042001.
         | Crossref | GoogleScholarGoogle Scholar |

[183]  TA Smith, KP Ghiggino, Methods Appl Fluoresc 2015, 3, 022001.
         | Crossref | GoogleScholarGoogle Scholar |

[184]  XT Hao, LJ McKimmie, TA Smith, J Phys Chem Lett 2011, 2, 1520.
         | Crossref | GoogleScholarGoogle Scholar |

[185]  W Mao, CR Hall, ASR Chesman, C Forsyth, YB Cheng, NW Duffy, TA Smith, U Bach, Angew Chem Int Ed 2019, 58, 2893.
         | Crossref | GoogleScholarGoogle Scholar |

[186]  JS Laird, S Ravishankar, KJ Rietwyk, W Mao, U Bach, TA Smith, Small Methods 2022, 6, 2200493.
         | Crossref | GoogleScholarGoogle Scholar |

[187]  AL Stevens, S Novakovic, JM White, WWH Wong, TA Smith, KP Ghiggino, MF Paige, RP Steer, J Phys Chem A 2018, 122, 9605.
         | Crossref | GoogleScholarGoogle Scholar |

[188]  YF Bo, YY Liu, H Soleimaninejad, MN Yu, LH Xie, TA Smith, KP Ghiggino, W Huang, J Phys Chem A 2019, 123, 2789.
         | Crossref | GoogleScholarGoogle Scholar |

[189]  EN Hooley, AJ Tilley, JM White, KP Ghiggino, TDM Bell, Phys Chem Chem Phys 2014, 16, 7108.
         | Crossref | GoogleScholarGoogle Scholar |

[190]  MN Yu, H Soleimaninejad, JY Lin, ZY Zuo, B Liu, YF Bo, LB Bai, YM Han, TA Smith, M Xu, XP Wu, DE Dunstan, RD Xia, LH Xie, DDC Bradley, W Huang, J Phys Chem Lett 2018, 9, 364.
         | Crossref | GoogleScholarGoogle Scholar |

[191]  M Dvořák, SKK Prasad, CB Dover, CR Forest, A Kaleem, RW Macqueen, AJ Petty, R Forecast, JE Beves, JE Anthony, MJY Tayebjee, A Widmer-Cooper, P Thordarson, TW Schmidt, J Am Chem Soc 2021, 143, 13749.
         | Crossref | GoogleScholarGoogle Scholar |

[192]  EM Gholizadeh, SKK Prasad, ZL Teh, T Ishwara, S Norman, AJ Petty II, JH Cole, S Cheong, RD Tilley, JE Anthony, S Huang, TW Schmidt, Nat Photon 2020, 14, 585.
         | Crossref | GoogleScholarGoogle Scholar |

[193]  EM Gholizadeh, SKK Prasad, LV Gillan, MP Nielsen, NJ Ekins-Daukes, DR McCamey, MJY Tayebjee, TW Schmidt, J Phys Chem C 2021, 125, 22464.
         | Crossref | GoogleScholarGoogle Scholar |

[194]  MJY Tayebjee, RGCR Clady, TW Schmidt, Phys Chem Chem Phys 2013, 15, 14797.
         | Crossref | GoogleScholarGoogle Scholar |

[195]  L Wimberger, SKK Prasad, MD Peeks, J Andréasson, TW Schmidt, JE Beves, J Am Chem Soc 2021, 143, 20758.
         | Crossref | GoogleScholarGoogle Scholar |

[196]  S Gückel, P Safari, SM Bagher Hosseini Ghazvini, MR Hall, JBG Gluyas, M Kaupp, PJ Low, Organometallics 2021, 40, 346.
         | Crossref | GoogleScholarGoogle Scholar |

[197]  S Gückel, JBG Gluyas, SG Eaves, P Safari, DS Yufit, AN Sobolev, M Kaupp, PJ Low, Chem Eur J 2019, 25, 8837.
         | Crossref | GoogleScholarGoogle Scholar |

[198]  S Gückel, JBG Gluyas, S El-Tarhuni, AN Sobolev, MW Whiteley, JF Halet, C Lapinte, M Kaupp, PJ Low, Organometallics 2018, 37, 1432.
         | Crossref | GoogleScholarGoogle Scholar |

[199]  J Yu, JR Horsley, AD Abell, Acc Chem Res 2018, 51, 2237.
         | Crossref | GoogleScholarGoogle Scholar |

[200]  X Chen, YQ Yeoh, Y He, C Zhou, JR Horsley, AD Abell, J Yu, X Guo, Angew Chem Int Ed 2020, 59, 22554.
         | Crossref | GoogleScholarGoogle Scholar |

[201]  YB Vogel, VR Gonçales, L Al-Obaidi, JJ Gooding, N Darwish, S Ciampi, Adv Funct Mater 2018, 28, 1804791.
         | Crossref | GoogleScholarGoogle Scholar |

[202]  CR Peiris, S Ferrie, S Ciampi, WDA Rickard, N Darwish, ACS Appl Nano Mater 2022, 5, 6609.
         | Crossref | GoogleScholarGoogle Scholar |

[203]  T Li, EM Dief, Z Kalužná, M MacGregor, C Foroutan-Nejad, N Darwish, Langmuir 2022, 38, 5532.
         | Crossref | GoogleScholarGoogle Scholar |

[204]  T Li, S Ciampi, N Darwish, ChemElectroChem 2022, 9, e202200255.
         | Crossref | GoogleScholarGoogle Scholar |

[205]  VL Nadurata, MA Hay, JT Janetzki, GK Gransbury, C Boskovic, Dalton Trans 2021, 50, 16631.
         | Crossref | GoogleScholarGoogle Scholar |

[206]  GK Gransbury, BN Livesay, JT Janetzki, MA Hay, RW Gable, MP Shores, A Starikova, C Boskovic, J Am Chem Soc 2020, 142, 10692.
         | Crossref | GoogleScholarGoogle Scholar |

[207]  GK Gransbury, ME Boulon, RA Mole, RW Gable, B Moubaraki, KS Murray, L Sorace, A Soncini, C Boskovic, Chem Sci 2019, 10, 8855.
         | Crossref | GoogleScholarGoogle Scholar |

[208]  T Tezgerevska, E Rousset, RW Gable, GNL Jameson, EC Sañudo, A Starikova, C Boskovic, Dalton Trans 2019, 48, 11674.
         | Crossref | GoogleScholarGoogle Scholar |

[209]  GK Gransbury, ME Boulon, S Petrie, RW Gable, RJ Mulder, L Sorace, R Stranger, C Boskovic, Inorg Chem 2019, 58, 4230.
         | Crossref | GoogleScholarGoogle Scholar |

[210]  J Subbiah, B Purushothaman, M Chen, T Qin, M Gao, D Vak, FH Scholes, X Chen, SE Watkins, GJ Wilson, AB Holmes, WWH Wong, DJ Jones, Adv Mater 2015, 27, 702.
         | Crossref | GoogleScholarGoogle Scholar |

[211]  S Masoomi-Godarzi, M Liu, Y Tachibana, L Goerigk, KP Ghiggino, TA Smith, DJ Jones, Adv Energy Mater 2018, 8, 1801720.
         | Crossref | GoogleScholarGoogle Scholar |

[212]  B Zhang, P Zhao, LJ Wilson, J Subbiah, H Yang, P Mulvaney, DJ Jones, KP Ghiggino, WWH Wong, ACS Energy Lett 2019, 4, 1839.
         | Crossref | GoogleScholarGoogle Scholar |

[213]  R O’Shea, C Gao, S Bradley, TC Owyong, N Wu, JM White, KP Ghiggino, WWH Wong, Mater Adv 2021, 2, 7751.
         | Crossref | GoogleScholarGoogle Scholar |

[214]  S Saxena, P Marlow, J Subbiah, A Colsmann, WWH Wong, DJ Jones, ACS Appl Mater Interfaces 2021, 13, 36044.
         | Crossref | GoogleScholarGoogle Scholar |

[215]  AKM Kafi, MJ Crossley, Biosens Bioelectron 2013, 42, 273.
         | Crossref | GoogleScholarGoogle Scholar |

[216]  D Anderson, S Cottam, H Heim, H Zhang, NP Holmes, MJ Griffith, MRS Commun 2019, 9, 1206.
         | Crossref | GoogleScholarGoogle Scholar |

[217]  MF Al-Mudhaffer, NP Holmes, P Kumar, MG Barr, S Cottam, R Crovador, TW Jones, R Lim, X Zhou, J Holdsworth, WJ Belcher, PC Dastoor, MJ Griffith, MRS Commun 2020, 10, 600.
         | Crossref | GoogleScholarGoogle Scholar |

[218]  M Marks, NP Holmes, A Sharma, X Pan, R Chowdhury, MG Barr, C Fenn, MJ Griffith, K Feron, ALD Kilcoyne, DA Lewis, MR Andersson, WJ Belcher, PC Dastoor, Phys Chem Chem Phys 2019, 21, 5705.
         | Crossref | GoogleScholarGoogle Scholar |

[219]  VJ Kumar, JZ Wu, M Judd, E Rousset, M Korb, SA Moggach, N Cox, PJ Low, J Mater Chem C 2022, 10, 1896.
         | Crossref | GoogleScholarGoogle Scholar |

[220]  M Naher, S Bock, ZM Langtry, KM O’Malley, AN Sobolev, BW Skelton, M Korb, PJ Low, Organometallics 2020, 39, 4667.
         | Crossref | GoogleScholarGoogle Scholar |

[221]  E Escorihuela, P Cea, S Bock, DC Milan, S Naghibi, HM Osorio, RJ Nichols, PJ Low, S Martin, J Mater Chem C 2020, 8, 672.
         | Crossref | GoogleScholarGoogle Scholar |

[222]  S Bock, PJ Low, Aust J Chem 2018, 71, 307.
         | Crossref | GoogleScholarGoogle Scholar |

[223]  J Yu, DM Huang, JG Shapter, AD Abell, J Phys Chem C 2012, 116, 26608.
         | Crossref | GoogleScholarGoogle Scholar |

[224]  G Gryn’ova, DL Marshall, SJ Blanksby, ML Coote, Nat Chem 2013, 5, 474.
         | Crossref | GoogleScholarGoogle Scholar |

[225]  G Gryn’ova, JM Barakat, JP Blinco, SE Bottle, ML Coote, Chem Eur J 2012, 18, 7582.
         | Crossref | GoogleScholarGoogle Scholar |

[226]  G Gryn’ova, ML Coote, C Corminboeuf, WIREs Comput Mol Sci 2015, 5, 440.
         | Crossref | GoogleScholarGoogle Scholar |

[227]  Y Li, NL Haworth, L Xiang, S Ciampi, ML Coote, N Tao, J Am Chem Soc 2017, 139, 14699.
         | Crossref | GoogleScholarGoogle Scholar |

[228]  NS Hill, ML Coote, J Am Chem Soc 2018, 140, 17800.
         | Crossref | GoogleScholarGoogle Scholar |

[229]  SL Rudge, DS Kosov, Phys Rev B 2021, 104, 165307.
         | Crossref | GoogleScholarGoogle Scholar |

[230]  NS Davis, SL Rudge, DS Kosov, Phys Rev B 2021, 103, 205408.
         | Crossref | GoogleScholarGoogle Scholar |

[231]  SL Rudge, DS Kosov, Phys Rev B 2019, 100, 235430.
         | Crossref | GoogleScholarGoogle Scholar |

[232]  SL Rudge, DS Kosov, Phys Rev B 2019, 99, 115426.
         | Crossref | GoogleScholarGoogle Scholar |

[233]  SL Rudge, DS Kosov, J Chem Phys 2019, 151, 034107.
         | Crossref | GoogleScholarGoogle Scholar |

[234]  SL Rudge, DS Kosov, Phys Rev B 2018, 98, 245402.
         | Crossref | GoogleScholarGoogle Scholar |

[235]  DS Kosov, J Chem Phys 2018, 149, 164105.
         | Crossref | GoogleScholarGoogle Scholar |

[236]  DS Kosov, J Chem Phys 2018, 148, 184108.
         | Crossref | GoogleScholarGoogle Scholar |

[237]  DS Kosov, J Chem Phys 2017, 147, 104109.
         | Crossref | GoogleScholarGoogle Scholar |

[238]  DS Kosov, J Chem Phys 2017, 146, 074102.
         | Crossref | GoogleScholarGoogle Scholar |

[239]  TD Honeychurch, DS Kosov, Phys Rev B 2020, 102, 195409.
         | Crossref | GoogleScholarGoogle Scholar |

[240]  RJ Preston, TD Honeychurch, DS Kosov, J Chem Phys 2020, 153, 121102.
         | Crossref | GoogleScholarGoogle Scholar |

[241]  TD Honeychurch, DS Kosov, Phys Rev B 2019, 100, 245423.
         | Crossref | GoogleScholarGoogle Scholar |

[242]  RJ Preston, TD Honeychurch, DS Kosov, Phys Rev B 2022, 106, 195406.
         | Crossref | GoogleScholarGoogle Scholar |

[243]  VF Kershaw, DS Kosov, J Chem Phys 2020, 153, 154101.
         | Crossref | GoogleScholarGoogle Scholar |

[244]  RJ Preston, VF Kershaw, DS Kosov, Phys Rev B 2020, 101, 155415.
         | Crossref | GoogleScholarGoogle Scholar |

[245]  VF Kershaw, DS Kosov, J Chem Phys 2019, 150, 074101.
         | Crossref | GoogleScholarGoogle Scholar |

[246]  VF Kershaw, DS Kosov, J Chem Phys 2018, 149, 044121.
         | Crossref | GoogleScholarGoogle Scholar |

[247]  VF Kershaw, DS Kosov, J Chem Phys 2017, 147, 224109.
         | Crossref | GoogleScholarGoogle Scholar |

[248]  RJ Preston, MF Gelin, DS Kosov, J Chem Phys 2021, 154, 114108.
         | Crossref | GoogleScholarGoogle Scholar |

[249]  AA Dzhioev, DS Kosov, F von Oppen, J Chem Phys 2013, 138, 134103.
         | Crossref | GoogleScholarGoogle Scholar |

[250]  AA Dzhioev, DS Kosov, J Chem Phys 2011, 135, 074701.
         | Crossref | GoogleScholarGoogle Scholar |

[251]  JR Reimers, Y Wang, DS Kosov, J Phys Chem C 2019, 123, 15569.
         | Crossref | GoogleScholarGoogle Scholar |

[252]  Z Li, DS Kosov, Phys Rev B 2007, 76, 035415.
         | Crossref | GoogleScholarGoogle Scholar |

[253]  Z Li, DS Kosov, J Phys Chem B 2006, 110, 9893.
         | Crossref | GoogleScholarGoogle Scholar |

[254]  S Ahmad, K Mustonen, B McLean, H Jiang, Q Zhang, A Hussain, AT Khan, E-X Ding, Y Liao, N Wei, MRA Monazam, AG Nasibulin, J Kotakoski, AJ Page, EI Kauppinen, Adv Funct Mater 2020, 30, 2005016.
         | Crossref | GoogleScholarGoogle Scholar |

[255]  R Stefanovic, M Ludwig, GB Webber, R Atkin, AJ Page, Phys Chem Chem Phys 2017, 19, 3297.
         | Crossref | GoogleScholarGoogle Scholar |

[256]  X Li, R Chiong, AJ Page, J Phys Chem Lett 2021, 12, 5156.
         | Crossref | GoogleScholarGoogle Scholar |

[257]  JR Reimers, MJ Ford, SM Marcuccio, J Ulstrup, NS Hush, Nat Rev Chem 2017, 1, 0017.
         | Crossref | GoogleScholarGoogle Scholar |

[258]  JR Reimers, D Panduwinata, J Visser, Y Chin, C Tang, L Goerigk, MJ Ford, M Sintic, T-J Sum, MJJ Coenen, BLM Hendriksen, JAAW Elemans, NS Hush, MJ Crossley, Proc Natl Acad Sci USA 2015, 112, E6101.
         | Crossref | GoogleScholarGoogle Scholar |

[259]  JR Reimers, MJ Ford, A Halder, J Ulstrup, NS Hush, Proc Natl Acad Sci USA 2016, 113, E1424.
         | Crossref | GoogleScholarGoogle Scholar |

[260]  GC Solomon, JR Reimers, NS Hush, J Chem Phys 2005, 122, 224502.
         | Crossref | GoogleScholarGoogle Scholar |

[261]  GC Solomon, A Gagliardi, A Pecchia, T Frauenheim, A Di Carlo, JR Reimers, NS Hush, Nano Lett 2006, 6, 2431.
         | Crossref | GoogleScholarGoogle Scholar |

[262]  A Gagliardi, GC Solomon, A Pecchia, T Frauenheim, A Di Carlo, NS Hush, JR Reimers, Phys Rev B 2007, 75, 174306.
         | Crossref | GoogleScholarGoogle Scholar |

[263]  S Wohlthat, GC Solomon, NS Hush, JR Reimers, Theor Chem Acc 2011, 130, 815.
         | Crossref | GoogleScholarGoogle Scholar |

[264]  YB Vogel, J Zhang, N Darwish, S Ciampi, ACS Nano 2018, 12, 8071.
         | Crossref | GoogleScholarGoogle Scholar |

[265]  M Belotti, X Lyu, L Xu, P Halat, N Darwish, DS Silvester, C Goh, EI Izgorodina, ML Coote, S Ciampi, J Am Chem Soc 2021, 143, 17431.
         | Crossref | GoogleScholarGoogle Scholar |

[266]  EM Dief, N Hoffmann, N Darwish, Surfaces 2022, 5, 218.
         | Crossref | GoogleScholarGoogle Scholar |

[267]  B Rai, R Malmberg, V Srinivasan, KM Ganesh, NSV Kambhampati, A Andar, G Rao, CB Sanjeevi, K Venkatesan, SS Ramamurthy, ACS Sens 2021, 6, 4360.
         | Crossref | GoogleScholarGoogle Scholar |

[268]  AKM Kafi, NS Azmi, MM Yusoff, MJ Crossley, J Nanosci Nanotechnol 2017, 17, 5896.
         | Crossref | GoogleScholarGoogle Scholar |

[269]  AKM Kafi, MM Yusoff, M Choucair, MJ Crossley, J Solid State Electrochem 2017, 21, 2761.
         | Crossref | GoogleScholarGoogle Scholar |

[270]  AKM Kafi, M Naqshabandi, MM Yusoff, MJ Crossley, Enzyme Microb Technol 2018, 113, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[271]  AKM Kafi, NS Azmi, MM Yusoff, MJ Crossley, Procedia Technol 2017, 27, 201.
         | Crossref | GoogleScholarGoogle Scholar |

[272]  CP Sherwood, DC Elkington, MR Dickinson, WJ Belcher, PC Dastoor, K Feron, AM Brichta, R Lim, MJ Griffith, IEEE J Sel Top Quantum Electron 2021, 27, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[273]  R Crovador, H Heim, S Cottam, K Feron, V Bhatia, F Louie, CP Sherwood, PC Dastoor, AM Brichta, R Lim, MJ Griffith, ACS Appl Bio Mater 2021, 4, 6338.
         | Crossref | GoogleScholarGoogle Scholar |

[274]  JA Posar, J Davis, O Brace, P Sellin, MJ Griffith, O Dhez, D Wilkinson, MLF Lerch, A Rosenfeld, M Petasecca, Phys Imaging Radiat Oncol 2020, 14, 48.
         | Crossref | GoogleScholarGoogle Scholar |

[275]  S Rahpeima, EM Dief, CR Peiris, S Ferrie, A Duan, S Ciampi, CL Raston, N Darwish, Chem Commun 2020, 56, 6209.
         | Crossref | GoogleScholarGoogle Scholar |

[276]  S Rahpeima, A Le Brun, CL Raston, N Darwish, J Colloid Interface Sci 2022, 626, 985.
         | Crossref | GoogleScholarGoogle Scholar |

[277]  MJ Griffith, NA Cooling, DC Elkington, E Muller, WJ Belcher, PC Dastoor, Appl Phys Lett 2014, 105, 143301.
         | Crossref | GoogleScholarGoogle Scholar |

[278]  MJ Griffith, NA Cooling, DC Elkington, M Wasson, X Zhou, WJ Belcher, PC Dastoor, Nanomaterials 2021, 11, 1185.
         | Crossref | GoogleScholarGoogle Scholar |

[279]  MJ Griffith, S Cottam, J Stamenkovic, JA Posar, M Petasecca, Front Phys 2020, 8, 22.
         | Crossref | GoogleScholarGoogle Scholar |

[280]  AY Al-Ahmad, F Almayhi, MF Al-Mudhaffer, MJ Griffith, W Liu, S Li, K Sivunova, D Elkington, NA Cooling, K Feron, M Shi, W Belcher, H Chen, P Dastoor, TR Andersen, Sustain Energy Fuels 2020, 4, 940.
         | Crossref | GoogleScholarGoogle Scholar |

[281]  TR Andersen, F Almyahi, NA Cooling, D Elkington, L Wiggins, A Fahy, K Feron, B Vaughan, MJ Griffith, AJ Mozer, C Sae-Kung, GG Wallace, WJ Belcher, PC Dastoor, J Mater Chem A 2016, 4, 15986.
         | Crossref | GoogleScholarGoogle Scholar |

[282]  MJ Griffith, AJ Mozer, G Tsekouras, Y Dong, P Wagner, K Wagner, GG Wallace, S Mori, DL Officer, Appl Phys Lett 2011, 98, 163502.
         | Crossref | GoogleScholarGoogle Scholar |

[283]  MJ Griffith, MS Willis, P Kumar, JL Holdsworth, H Bezuidenhout, X Zhou, W Belcher, PC Dastoor, ACS Appl Mater Interfaces 2016, 8, 7928.
         | Crossref | GoogleScholarGoogle Scholar |

[284]  JA Posar, J Davis, MJ Large, L Basiricò, A Ciavatti, B Fraboni, O Dhez, D Wilkinson, PJ Sellin, MJ Griffith, MLF Lerch, A Rosenfeld, M Petasecca, Med Phys 2020, 47, 3658.
         | Crossref | GoogleScholarGoogle Scholar |

[285]  M Ameri, MF Al-Mudhaffer, F Almyahi, GC Fardell, M Marks, A Al-Ahmad, A Fahy, T Andersen, DC Elkington, K Feron, M Dickinson, F Samavat, PC Dastoor, MJ Griffith, ACS Appl Mater Interfaces 2019, 11, 10074.
         | Crossref | GoogleScholarGoogle Scholar |

[286]  MF Al-Mudhaffer, MJ Griffith, K Feron, NC Nicolaidis, NA Cooling, X Zhou, J Holdsworth, WJ Belcher, PC Dastoor, Sol Energy Mater Sol Cells 2018, 175, 77.
         | Crossref | GoogleScholarGoogle Scholar |

[287]  K Sunahara, MJ Griffith, T Uchiyama, P Wagner, DL Officer, GG Wallace, AJ Mozer, S Mori, ACS Appl Mater Interfaces 2013, 5, 10824.
         | Crossref | GoogleScholarGoogle Scholar |

[288]  MJ Large, JA Posar, AJ Mozer, A Nattestad, S Alnaghy, M Carolan, PJ Sellin, J Davies, Z Pastuovic, MLF Lerch, S Guatelli, A Rosenfeld, MJ Griffith, M Petasecca, ACS Appl Mater Interfaces 2021, 13, 57703.
         | Crossref | GoogleScholarGoogle Scholar |

[289]  KW Nam, H Kim, Y Beldjoudi, T-w Kwon, DJ Kim, JF Stoddart, J Am Chem Soc 2020, 142, 2541.
         | Crossref | GoogleScholarGoogle Scholar |

[290]  Y Feng, M Ovalle, JSW Seale, CK Lee, DJ Kim, RD Astumian, JF Stoddart, J Am Chem Soc 2021, 143, 5569.
         | Crossref | GoogleScholarGoogle Scholar |

[291]  H Chen, V Brasiliense, J Mo, L Zhang, Y Jiao, Z Chen, LO Jones, G He, Q-H Guo, X-Y Chen, B Song, GC Schatz, JF Stoddart, J Am Chem Soc 2021, 143, 2886.
         | Crossref | GoogleScholarGoogle Scholar |

[292]  H Chen, F Jiang, C Hu, Y Jiao, S Chen, Y Qiu, P Zhou, L Zhang, K Cai, B Song, X-Y Chen, X Zhao, MR Wasielewski, H Guo, W Hong, JF Stoddart, J Am Chem Soc 2021, 143, 8476.
         | Crossref | GoogleScholarGoogle Scholar |

[293]  H Chen, C Jia, X Zhu, C Yang, X Guo, JF Stoddart, Nat Rev Mater 2022, 8, 165.
         | Crossref | GoogleScholarGoogle Scholar |