Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The C-terminal pentapeptide acein analogue (JMV3315) stimulates dopamine release in the brain

Charlène Lucas-Valmalle A , Gilles Subra A , Pascal Verdié A , Marie-Lou Kemel B , Valérie Daugé C , Karine Puget A D and Jean Martinez https://orcid.org/0000-0002-9267-4621 A *
+ Author Affiliations
- Author Affiliations

A Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier-ENSCM, Pôle Chimie Balard Recherche, 1919, route de Mende, 34293 Montpellier cedex 5, France.

B CIRB, Collège de France, 11, place Marcelin Berthelot, 75231 Paris Cedex 05, France.

C INSERM, UMR 952, Physiopathologie des Maladies du Système Nerveux Central, 9 Quai Saint Bernard, F-75005 Paris, France.

D Present address: GENEPEP PEPTIDES, 12 rue du fer á cheval, 34430 Saint Jean de Védas, France.

* Correspondence to: jean.martinez@umontpellier.fr

Handling Editor: Mibel Aguilar

Australian Journal of Chemistry 76(8) 448-454 https://doi.org/10.1071/CH22232
Submitted: 8 November 2022  Accepted: 23 February 2023   Published: 31 May 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

We have previously reported the synthesis and biological activity of a newly identified peptide of sequence H–Pro–Pro–Thr–Thr–Thr–Lys–Phe–Ala–Ala–OH called acein that is able to stimulate dopamine release in the brain of rodents in vivo and ex vivo by interacting with angiotensin converting enzyme (ACE). In the present piece of work, we studied the structure–activity relationships of acein using displacement experiments of the labelled ligand [125I]Tyr–Pro–Pro–Thr–Thr–Thr–Lys–Phe–Ala–Ala–OH on guinea pig brain membranes, known to have high-affinity acein binding sites. We determined that the C-terminal pentapeptide H–Thr–Lys–Phe–Ala–Ala–OH is the minimal structure able to interact with high affinity (Ki (inhibitory constant) 13 ± 2 nM) with acein binding sites. Among the analogues of the pentapeptide that were synthesized, the pentapeptide H–Thr–Lys–Tyr–Ala–Ala–OH showed the highest affinity (Ki 3.7 ± 1.0 nM). Accordingly, this pentapeptide was able to stimulate dopamine release from striatal slices taken from the sensorimotor territory of rats.

Keywords: acein, angiotensin converting enzyme, biological activity, central nervous system, dopamine, enzyme, peptides, structure–activity relationships.


References

[1]  M Schenone, V Dančík, BK Wagner, PA Clemons, Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 2013, 9, 232.
         | Target identification and mechanism of action in chemical biology and drug discovery.Crossref | GoogleScholarGoogle Scholar |

[2]  J Neasta, C Valmalle, AC Coyne, E Carnazzi, G Subra, JC Galleyrand, D Gagne, C M’Kadmi, N Bernad, G Bergé, S Cantel, Ph Marin, J Marie, JL Banères, ML Kemel, V Daugé, K Puget, J Martinez, The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release. Br J Pharmacol 2016, 173, 1314.
         | The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release.Crossref | GoogleScholarGoogle Scholar |

[3]  J Martinez, Unexpected functions of angiotensin converting enzyme, beyond its enzymatic activity. J Peptide Sci 2017, 23, 741.

[4]  PM Abadir, JD Walston, RM Carey, Subcellular characteristics of functional intracellular renin–angiotensin systems Peptides 2012, 38, 437.

[5]  C Cosarderelioglu, LS Nidadavolu, CJ George, ES Oh, DA Bennett, JD Walston, PM Abadir, Brain Renin–Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front Neurosci 2020, 14, 586314.
         | Brain Renin–Angiotensin System at the Intersect of Physical and Cognitive Frailty.Crossref | GoogleScholarGoogle Scholar |

[6]  JM Saavedra, Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol 2005, 25, 485.
         | Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities.Crossref | GoogleScholarGoogle Scholar |

[7]  JL Grobe, D Xu, CD Sigmund, An intracellular renin–angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology (Bethesda) 2008, 23, 187.
         | An intracellular renin–angiotensin system in neurons: fact, hypothesis, or fantasy.Crossref | GoogleScholarGoogle Scholar |

[8]  D Ganten, A Marquez-Julio, P Granger, K Hayduk, KP Karsunky, R Boucher, et al. Renin in dog brain. Am J Physiol 1971, 221, 1733.
         | Renin in dog brain.Crossref | GoogleScholarGoogle Scholar |

[9]  JW Harding, MJ Sullivan, JM Hanesworth, LL Cushing, JW Wright, Inability of [125I]Sar1, Ile8-Angiotensin II to move between the blood and cerebrospinal fluid compartments. J Neurochem 1988, 50, 554.
         | Inability of [125I]Sar1, Ile8-Angiotensin II to move between the blood and cerebrospinal fluid compartments.Crossref | GoogleScholarGoogle Scholar |

[10]  JW Wright, LH Kawas, JW Harding, A role for the brain RAS in Alzheimer’s and Parkinson’s diseases. Front Endocrinol (Lausanne) 2013, 4, 158.
         | A role for the brain RAS in Alzheimer’s and Parkinson’s diseases.Crossref | GoogleScholarGoogle Scholar |

[11]  K Fuxe, D Ganten, T Hökfelt, V Locatelli, K Poulsen, G Stock, E Rix, R Taugner, Renin-like immunocytochemical activity in the rat and mouse brain. Neurosci Lett 1980, 18, 245.
         | Renin-like immunocytochemical activity in the rat and mouse brain.Crossref | GoogleScholarGoogle Scholar |

[12]  K Hermann, MK Raizada, C Summers, MI Phillips, Presence of renin in primary neuronal and glial cells from rat brain. Brain Res 1987, 437, 205.
         | Presence of renin in primary neuronal and glial cells from rat brain.Crossref | GoogleScholarGoogle Scholar |

[13]  S Keisuke, P Nakagawa, J Gomez, DA Morgan, NK Littlejohn, MD Folchert, BJ Weidemann, X Liu, SA Walsh, LL Ponto, K Rahmouni, JL Grobe, CD Sigmund, Selective deletion of renin-b in the brain alters drinking and metabolism. Hypertension 2017, 70, 990.
         | Selective deletion of renin-b in the brain alters drinking and metabolism.Crossref | GoogleScholarGoogle Scholar |

[14]  C Llorens-Cortes, RM Touyz, Evolution of a new class of antihypertensive drugs: targeting the brain renin–angiotensin system. Hypertension 2020, 75, 6.
         | Evolution of a new class of antihypertensive drugs: targeting the brain renin–angiotensin system.Crossref | GoogleScholarGoogle Scholar |

[15]  CD Sigmund, DI Diz, MC Chappell, No Brain Renin–Angiotensin System: Déjà vu All Over Again? Hypertension 2017, 69, 1007.
         | No Brain Renin–Angiotensin System: Déjà vu All Over Again?Crossref | GoogleScholarGoogle Scholar |

[16]  BS Van Thiel, A Góes Martini, L Te Riet, D Severs, E Uijl, IM Garrelds, FPJ Leijten, I Van der Pluijm, J Essers, F Qadri, N Alenina, M Bader, L Paulis, R Rajkovicova, O Domenig, M Poglitsch, AHJ Danser, Brain Renin–Angiotensin System: Does It Exist? Hypertension 2017, 69, 1136.
         | Brain Renin–Angiotensin System: Does It Exist?Crossref | GoogleScholarGoogle Scholar |

[17]  JL Labandeira-Garcia, P Garrido-Gil, J Rodriguez-Pallares, R Valezuela, A Borrajo, AI Rodriguez-Perez, Brain renin–angiotensin system and dopaminergic cell vulnerability. Front Neuroanat 2014, 8, 1.

[18]  G Simonnet, MF Giorguieff-Chesselet, Stimulating effect of angiotensin-II on the spontaneous release of newly synthesised [3H] dopamine in rat striatal slices. Neurosci Lett 1979, 15, 153.

[19]  T Kobiec, M Otero-Losada, G Chevalier, L Udovin, S Bordet, C Menendez-Maissonave, F Capani, S Perez-Lloret, The renin–angiotensin system modulates dopaminergic neurotransmission: a new player on the scene. Front Synaptic Neurosci 2021, 13, 638519.

[20]  FAO Mendelsohn, TA Jenkins, SF Berkovic, Effects of angiotensin-II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res 1993, 613, 221.

[21]  TA Jenkins, FAO Mendelsohn, SY Chai, Angiotensin-converting enzyme modulates dopamine turnover in the striatum. J Neurochem 1997, 68, 1304.

[22]  R Loera-Valencia, F Eroli, S Garcia-Ptacek, S Maioli, Brain Renin–Angiotensin System as Novel and Potential Therapeutic Target for Alzheimer’s Disease. Int J Mol Sci 2021, 22, 10139.
         | Brain Renin–Angiotensin System as Novel and Potential Therapeutic Target for Alzheimer’s Disease.Crossref | GoogleScholarGoogle Scholar |

[23]  AF Almeida-Santos, LM Kangussu, MJ Campagnole-Santos, The Renin-Angiotensin System and the Neurodegenerative Diseases: A Brief Review. Protein Pept Lett 2017, 24, 841.
         | The Renin-Angiotensin System and the Neurodegenerative Diseases: A Brief Review.Crossref | GoogleScholarGoogle Scholar |

[24]  D Wincewicz, JJ Braszko, Validation of Brain Angiotensin System Blockade as a Novel Drug Target in Pharmacological Treatment of Neuropsychiatric Disorders. Pharmacopsychiatry 2017, 50, 233.
         | Validation of Brain Angiotensin System Blockade as a Novel Drug Target in Pharmacological Treatment of Neuropsychiatric Disorders.Crossref | GoogleScholarGoogle Scholar |

[25]  CM Deus, J Teixeira, N Raimundo, P Tucci, F Borges, L Saso, PJ Oliveira, Modulation of cellular redox environment as a novel therapeutic strategy for Parkinson’s disease. Eur J Clin Invest 2022, 52, e13820.
         | Modulation of cellular redox environment as a novel therapeutic strategy for Parkinson’s disease.Crossref | GoogleScholarGoogle Scholar |

[26]  A Dominguez-Meijide, AI Rodriguez-Perez, C Diaz-Ruiz, MJ Guerra, JL Labandeira-Garcia, Dopamine modulates astroglial and microglial activity via glial renin–angiotensin system in cultures. Brain Behav Immun 2017, 62, 277.
         | Dopamine modulates astroglial and microglial activity via glial renin–angiotensin system in cultures.Crossref | GoogleScholarGoogle Scholar |

[27]  MG Naffah-Mazzacoratti, TL Gouveia, PS Rodrigues Simoes, SR Perosa, What have we learned about the kallikrein-kinin and renin-angiotensin systems in neurological disorders? World J Biol Chem 2014, 5, 130.

[28]  K Ohshima, M Mogi, M Horiuchi, Therapeutic approach for neuronal disease by regulating renin-angiotensin system. Curr Hypertens Rev 2013, 9, 99.
         | Therapeutic approach for neuronal disease by regulating renin-angiotensin system.Crossref | GoogleScholarGoogle Scholar |

[29]  JM Saavedra, Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: a beneficial effect for the treatment of brain disorders. Cell Mol Neurobiol 2012, 32, 667.
         | Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: a beneficial effect for the treatment of brain disorders.Crossref | GoogleScholarGoogle Scholar |

[30]  E Savaskan, The renin-angiotensin system in neurodegenerative diseases. Schweiz Arch Neurol Psychiatr 2011, 162, 119.
         | The renin-angiotensin system in neurodegenerative diseases.Crossref | GoogleScholarGoogle Scholar |

[31]  W Zhao, Y Huang, Z Liu, BB Cao, YP Peng, YH Qiu, Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway. PLoS One 2013, 8, e65860.
         | Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway.Crossref | GoogleScholarGoogle Scholar |

[32]  Z Bai, P Yang, F Yu, Z Li, Z Yao, J Martinez, M Li, H Xu, Combining adoptive NK cell infusion with a dopamine-releasing peptide reduces senescent cells in aged mice. Cell Death Dis 2022, 13, 305.
         | Combining adoptive NK cell infusion with a dopamine-releasing peptide reduces senescent cells in aged mice.Crossref | GoogleScholarGoogle Scholar |

[33]  JW Johnson, P Ascher, Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987, 325, 529.

[34]  MO Krebs, ML Kemel, C Gauchy, M Desban, J Glowinski, Glycine potentiates the NMDA-induced release of dopamine through a strychnine-insensitive site in the rat striatum. Eur J Pharmacol 166, 567.

[35]  C Kilkenny, W Browne, IC Cuthill, M Emerson, DG Altman, Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 2010, 160, 1577.
         | Animal research: reporting in vivo experiments: the ARRIVE guidelines.Crossref | GoogleScholarGoogle Scholar |

[36]  Chan W, White P. Fmoc solid phase peptide synthesis: a practical approach. In: Hammes BD, editor. The Practical Approach Series. Oxford: Oxford University Press; 2000.

[37]  FC Greenwood, WM Hunter, JS Glover, The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem J 1963, 89, 114.
         | The preparation of 131I-labelled human growth hormone of high specific radioactivity.Crossref | GoogleScholarGoogle Scholar |

[38]  JP Leyris, T Roux, E Trinquet, P Verdié, JA Fehrentz, N Oueslati, S Douzon, E Bourrier, L Lamarque, D Gagne, J-C Galleyrand, C M’Kadmi, J Martinez, S Mary, J-L Banères, J Marie, Homogeneous time-resolved fluorescence-based assay to screen for ligands targeting the growth hormone secretagogue receptor type 1a. Anal Biochem 2011, 408, 253.
         | Homogeneous time-resolved fluorescence-based assay to screen for ligands targeting the growth hormone secretagogue receptor type 1a.Crossref | GoogleScholarGoogle Scholar |

[39]  D Mousseaux, L Le Gallic, J Ryan, C Oiry, D Gagne, JA Fehrentz, J-C Galleyrand, J Martinez, Regulation of ERK1/2 activity by ghrelin-activated growth hormone secretagogue receptor 1A involves a PLC/PKCɛ pathway. Br J Pharmacol 2006, 148, 350.
         | Regulation of ERK1/2 activity by ghrelin-activated growth hormone secretagogue receptor 1A involves a PLC/PKCɛ pathway.Crossref | GoogleScholarGoogle Scholar |