Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

The duhka of DFT: a noble path to better functionals via a point electron approximation for the exchange–correlation hole,

Dylan Jayatilaka A * and Amir Karton https://orcid.org/0000-0002-7981-508X A *
+ Author Affiliations
- Author Affiliations

A School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.

* Correspondence to: dylan.jayatilaka@uwa.edu.au

Handling Editor: Curt Wentrup

Australian Journal of Chemistry 75(11) 888-892 https://doi.org/10.1071/CH21332
Submitted: 14 December 2021  Accepted: 17 January 2022   Published: 28 March 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Density functional theory (DFT) is currently experiencing a golden age. The past two decades witnessed remarkable advances in the general applicability of density functionals in the top rungs of Jacob’s Ladder. Nevertheless, Jacob’s Ladder may have reached its highest rung in terms of dependencies on occupied (rung four) and unoccupied orbitals (rung five). Moreover, the fifth rung is associated with a computational cost far greater than the lower rungs. Another limitation is that each rung includes dozens of different functionals, and at present, there is no clear pathway for systematic improvements within each rung of the ladder. This highlight provides an overview of the exchange–correlation (XC) hole and how it could be used in developing new density functionals. We begin with a brief overview of the current status and challenges in developing better density functionals, followed by the intimate relationship between the XC functional and hole. We present a conceptually simple and computationally economical method for calculating the XC hole and how this method could offer new directions in developing better exchange–correlation functionals.

Keywords: density functional theory, electron correlation, exchange correlation energy, exchange correlation functional, exchange correlation hole, Jacob’s Ladder, pair correlation function.


References

[1]  LE Ratcliff, S Mohr, G Huhs, T Deutsch, M Masella, L Genovese, Wiley Interdiscip Rev Comput Mol Sci 2017, 7, e1290.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  GR Schleder, ACM Padilha, CM Acosta, M Costa, A Fazzio, J Phys Mater 2019, 2, 032001.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Parr RG, Yang W. Density Functional Theory of Atoms and Molecules. Oxford: Oxford University Press; 1989.

[4]  P Geerlings, F De Proft, W Langenaeker, Chem Rev 2003, 103, 1793.
         | 12744694PubMed |

[5]  U von Barth, Phys Scr 2004, T109, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  F Neese, Coord Chem Rev 2009, 253, 526.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  AJ Cohen, P Mori-Sánchez, W Yang, Chem Rev 2012, 112, 289.
         | Crossref | GoogleScholarGoogle Scholar | 22191548PubMed |

[8]  AD Becke, J Chem Phys 2014, 140, 18A301.
         | Crossref | GoogleScholarGoogle Scholar | 24832308PubMed |

[9]  R Peverati, DG Truhlar, Phil Trans R Soc A 2014, 372, 20120476.
         | Crossref | GoogleScholarGoogle Scholar | 24516178PubMed |

[10]  L Goerigk, S Grimme, Wiley Interdiscip Rev Comput Mol Sci 2014, 4, 576.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  RO Jones, Rev Modern Phys 2015, 87, 897.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  L Goerigk, N Mehta, Aust J Chem 2019, 72, 563.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  P Verma, DG Truhlar, Trends Chem 2020, 2, 302.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  JML Martin, G Santra, Isr J Chem 2020, 60, 787.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Some might say, “So what? Life comes with no guarantees.” Such was the nature of the schism that plagued quantum chemistry before the Great Reunification between Physicists and Chemists, the Nobel Prize of 1998.

[16]  JA Pople, J Chem Phys 1965, 43, S229.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  JP Perdew, K Schmidt, AIP Conf Proc 2001, 577, 1.

[18]  J Harris, RO Jones, Phys F: Met Phys 1974, 4, 1170.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  AD Becke, J Chem Phys 2014, 140, 18A301.
         | Crossref | GoogleScholarGoogle Scholar | 24832308PubMed |

[20]  A Karton, JML Martin, J Chem Phys 2011, 135, 144119.
         | Crossref | GoogleScholarGoogle Scholar | 22010710PubMed |

[21]  JP Perdew, A Ruzsinszky, J Tao, VN Staroverov, GE Scuseria, GI Csonka, J Chem Phys 2005, 123, 062201.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  É Brémond, ÁJ Pérez-Jiménez, JC Sancho-García, C Adamo, J Chem Phys 2019, 150, 201102.
         | Crossref | GoogleScholarGoogle Scholar | 31153220PubMed |

[23]  JP Perdew, K Burke, M Ernzerhof, Phys Rev Lett 1996, 77, 3865.
         | Crossref | GoogleScholarGoogle Scholar | 10062328PubMed |

[24]  J Tao, JP Perdew, VN Staroverov, GE Scuseria, Phys Rev Lett 2003, 91, 146401.
         | Crossref | GoogleScholarGoogle Scholar | 14611541PubMed |

[25]  J Sun, A Ruzsinszky, JP Perdew, Phys Rev Lett 2015, 115, 036402.
         | Crossref | GoogleScholarGoogle Scholar | 26230809PubMed |

[26]  C Adamo, V Barone, J Chem Phys 1999, 110, 6158.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  CA Guido, E Brémond, C Adamo, P Cortona, J Chem Phys 2013, 138, 021104.
         | Crossref | GoogleScholarGoogle Scholar | 23320660PubMed |

[28]  VN Staroverov, GE Scuseria, J Tao, JP Perdew, J Chem Phys 2003, 119, 12129.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  AD Boese, NC Handy, J Chem Phys 2001, 114, 5497.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  AD Boese, NC Handy, J Chem Phys 2002, 116, 9559.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  Y Zhao, DG Truhlar, J Chem Phys 2006, 125, 194101.
         | Crossref | GoogleScholarGoogle Scholar | 17129083PubMed |

[32]  AD Boese, JML Martin, J Chem Phys 2004, 121, 3405.
         | Crossref | GoogleScholarGoogle Scholar | 15303903PubMed |

[33]  Y Zhao, DG Truhlar, Theor Chem Acc 2008, 120, 215.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  N Mardirossian, M Head-Gordon, Mol Phys 2017, 115, 2315.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  L Goerigk, A Hansen, C Bauer, S Ehrlich, A Najibi, S Grimme, Phys Chem Chem Phys 2017, 19, 32184.
         | Crossref | GoogleScholarGoogle Scholar | 29110012PubMed |

[36]  A Karton, S Daon, JML Martin, Chem Phys Lett 2011, 510, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  A Karton, Chem Phys 2021, 540, 111013.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  MG Medvedev, IS Bushmarinov, J Sun, JP Perdew, KA Lyssenko, Science 2017, 355, 49.
         | Crossref | GoogleScholarGoogle Scholar | 28059761PubMed |

[39]  S Hammes-Schiffer, Science 2017, 355, 28.
         | Crossref | GoogleScholarGoogle Scholar | 28059729PubMed |

[40]  KP Kepp, Science 2017, 356, 496.
         | Crossref | GoogleScholarGoogle Scholar | 28473557PubMed |

[41]  ER Johnson, AD Becke, CD Sherrill, GA DiLabio, J Chem Phys 2009, 131, 034111.
         | Crossref | GoogleScholarGoogle Scholar | 19624185PubMed |

[42]  SE Wheeler, KN Houk, J Chem Theory Comput 2010, 6, 395.
         | Crossref | GoogleScholarGoogle Scholar | 20305831PubMed |

[43]  N Mardirossian, M Head-Gordon, J Chem Theory Comput 2013, 9, 4453.
         | Crossref | GoogleScholarGoogle Scholar | 26589163PubMed |

[44]  L-J Yu, F Sarrami, A Karton, RJ O’Reilly, Mol Phys 2015, 113, 1284.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  N Mardirossian, M Head-Gordon, Phys Chem Chem Phys 2014, 16, 9904.
         | Crossref | GoogleScholarGoogle Scholar | 24430168PubMed |

[46]  N Mardirossian, M Head-Gordon, J Chem Phys 2015, 142, 074111.
         | Crossref | GoogleScholarGoogle Scholar | 25702006PubMed |

[47]  G Santra, N Sylvetsky, JML Martin, J Phys Chem A 2019, 123, 5129.
         | Crossref | GoogleScholarGoogle Scholar | 31136709PubMed |

[48]  PMW Gill, Aust J Chem 2001, 54, 661.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  The word kha in dukha (which is the Sanskrit for suffering) was originally the word for “hole”.

[50]  O Gunnarsson, BI Lundqvist, Phys Rev B 1976, 13, 4274.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  O Gunnarsson, M Jonson, BI Lundqvist, Solid State Commun 1977, 24, 765.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  R Colle, O Salvetti, Theor Chim Acta 1975, 37, 329.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  C Lee, W Yang, RG Parr, Phys Rev B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  AD Becke, MR Roussel, Phys Rev A 1989, 39, 3761.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  AD Becke, ER Johnson, J Chem Phys 2005, 122, 154104.
         | Crossref | GoogleScholarGoogle Scholar | 15945622PubMed |

[56]  EJ Baerends, Phys Rev Lett 2001, 87, 133004.
         | Crossref | GoogleScholarGoogle Scholar | 11580585PubMed |

[57]  KJH Giesbertz, R van Leeuwen, U von Barth, Phys Rev A 2013, 87, 022514.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  J Brüggemann, CR Jacob, Faraday Discuss 2020, 224, 56.
         | Crossref | GoogleScholarGoogle Scholar | 32914802PubMed |

[59]  RQ Hood, MY Chou, AJ Williamson, G Rajagopal, RJ Needs, WMC Foulkes, Phys Rev Lett 1997, 78, 3350.
         | Crossref | GoogleScholarGoogle Scholar |