Synthesis and luminescent properties of heteroleptic lanthanide complexes with oxybenzo[h]quinoline
Tatyana V. Balashova A , Svetlana K. Polyakova A , Vasily A. Ilichev A , Andrey A. Kukinov A , Roman V. Rumyantcev A , Georgy K. Fukin A , Artem N. Yablonskiy B and Mikhail N. Bochkarev A *A G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Street, 49, 603950 Nizhny Novgorod, Russian Federation.
B Institute for Physics of Microstructures of Russian Academy of Sciences, Akademicheskaya Street 7, 603950 Nizhny Novgorod, Russian Federation.
Australian Journal of Chemistry 75(9) 532-542 https://doi.org/10.1071/CH21279
Submitted: 26 October 2021 Accepted: 10 December 2021 Published: 9 February 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
The heteroligand complexes CpLn(BQ)2(DME) (BQ = 10-oxybenzo[h]quinoline, Cp = cyclopentadienyl, Ln = La (1), Nd (2), Sm (3), Gd (4)) were synthesised by the reaction of Cp3Ln with (BQ)H. The complexes of La, Nd and Sm were structurally characterised. In the case of ytterbium the reaction affords Cp2Yb(BQ)(DME) (5) and homoligand binuclear complex Yb2(BQ)6 (6) iregardless of the molar ratio of initial reagents. Upon UV excitation all the complexes gave rise to fluorescence of ligands in the visible region. The photoluminescent spectrum of compound 1 also contains a phosphorescent band with a lifetime longer than 10 ms. The complexes of Nd, Sm and Yb along with ligand emission display metal-centered luminescent f–f transitions.
Keywords: 10-hydroxybenzo[h]quinoline, coordination chemistry, energy transfer, fluorescence, heteroligand complexes, lanthanides, luminescence, phosphorescence, X-ray structure.
References
[1] J Kido, Y Okamoto, Chem Rev 2002, 102, 2357.| Crossref | GoogleScholarGoogle Scholar | 12059271PubMed |
[2] A de Bettencourt-Dias, Dalton Trans 2007, 22, 2229.
| Crossref | GoogleScholarGoogle Scholar |
[3] K Binnemans, Chem Rev 2009, 109, 4283.
| Crossref | GoogleScholarGoogle Scholar | 19650663PubMed |
[4] SV Eliseeva, J-CG Bünzli, Chem Soc Rev 2010, 39, 189.
| Crossref | GoogleScholarGoogle Scholar | 20023849PubMed |
[5] MA Katkova, MN Bochkarev, Dalton Trans 2010, 39, 6599.
| Crossref | GoogleScholarGoogle Scholar | 20390195PubMed |
[6] MN Bochkarev, AG Vitukhnovsky, MA Katkova. Organic light-emitting diodes (OLED). Nyzhny Novgorod: Decom; 2011, pp. 1–364. ISBN: 978-589533-235-1.
[7] SI Weissman, J Chem Phys 1942, 10, 214.
| Crossref | GoogleScholarGoogle Scholar |
[8] DM Roitershtein, LN Puntus, AA Vinogradov, KA Lyssenko, ME Minyaev, MD Dobrokhodov, IV Taidakov, EA Varaksina, AV Churakov, IE Nifant’ev, Inorg Chem 2018, 57, 10199.
| Crossref | GoogleScholarGoogle Scholar | 30051707PubMed |
[9] H Schumann, JA Meese-Marktscheffel, L Esser, Chem Rev 1995, 95, 865.
| Crossref | GoogleScholarGoogle Scholar |
[10] G Wilkinson, JM Birmingham, J Am Chem Soc 1954, 76, 6210.
| Crossref | GoogleScholarGoogle Scholar |
[11] JM Birmingham, G Wilkinson, J Am Chem Soc 1956, 78, 42.
| Crossref | GoogleScholarGoogle Scholar |
[12] RE Maginn, S Manastyrskyj, M Dubeck, J Am Chem Soc 1963, 85, 672.
| Crossref | GoogleScholarGoogle Scholar |
[13] S Manastyrskyj, RE Maginn, M Dubeck, Inorg Chem 1963, 2, 904.
| Crossref | GoogleScholarGoogle Scholar |
[14] TV Balashova, AP Pushkarev, RV Rumyantcev, GK Fukin, ID Grishin, MN Bochkarev, J Organomet Chem 2015, 777, 42.
| Crossref | GoogleScholarGoogle Scholar |
[15] TV Balashova, EV Baranov, GK Fukin, VA Ilichev, ID Grishin, AN Yablonskiy, BA Andreev, MN Bochkarev, Russ J Coord Chem 2019, 45, 712.
| Crossref | GoogleScholarGoogle Scholar |
[16] MN Bochkarev, Chem Rev 2002, 102, 2089.
| Crossref | GoogleScholarGoogle Scholar | 12059262PubMed |
[17] WJ Evans, Coord Chem Rev 2000, 206−207, 263.
| Crossref | GoogleScholarGoogle Scholar |
[18] WJ Evans, Organomet 2016, 35, 3088.
| Crossref | GoogleScholarGoogle Scholar |
[19] ME Fieser, MG Ferrier, J Su, E Batista, SK Cary, JW Engle, WJ Evans, JSL Lezama Pacheco, SA Kozimor, AC Olson, AJ Ryan, BW Stein, GL Wagner, DH Woen, T Vitova, P Yang, Chem Sci 2017, 8, 6076.
| Crossref | GoogleScholarGoogle Scholar | 28989638PubMed |
[20] LN Puntus, KA Lyssenko, M Yu. Antipin, J-CG Bünzli, Inorg Chem 2008, 47, 11095.
| Crossref | GoogleScholarGoogle Scholar | 18950154PubMed |
[21] LN Puntus, KA Lyssenko, IS Pekareva, J-CG Bünzli, J Phys Chem B 2009, 113, 9265.
| Crossref | GoogleScholarGoogle Scholar | 19522489PubMed |
[22] RD Shannon, Acta Cryst 1976, A32, 751.
| Crossref | GoogleScholarGoogle Scholar |
[23] F Ortu, D Packer, J Liu, M Burton, A Formanuik, DP Mills, J Organomet Chem 2017, 857, 45.
| Crossref | GoogleScholarGoogle Scholar |
[24] PN Hazin, JW Bruno, GK Schulte, Organomet 1990, 9, 416.
| Crossref | GoogleScholarGoogle Scholar |
[25] K Schierwater, H Hanika-Heidl, M Bollmann, RD Fischer, RK Harris, DC Apperley, Coord Chem Rev 2003, 242, 15.
| Crossref | GoogleScholarGoogle Scholar |
[26] F Yuen, Q Shen, J Sun, J Chin Rare Earth Soc 1999, 17, 97.
[27] WJ Evans, DK Drummond, JW Grate, H Zhang, JL Atwood, J Am Chem Soc 1987, 109, 3928.
| Crossref | GoogleScholarGoogle Scholar |
[28] C Janiak, J Chem Soc Dalt Trans 2000, 3885.
| Crossref | GoogleScholarGoogle Scholar |
[29] B Robin, G Buell, P Kiprof, VN Nemykin, Acta Crystallogr, Sect E: Struct Rep Online 2008, 64, o314.
| Crossref | GoogleScholarGoogle Scholar |
[30] Y Tokoro, A Nagai, Y Chujo, Macromolec 2010, 43, 6229.
| Crossref | GoogleScholarGoogle Scholar |
[31] X-S Wu, Y Pan, X-Z Sun, Y Zhu, Chin J Struct Chem 1999, 18, 418.
[32] DM Kuzyaev, RB Rumyantsev, GK Fukin, MN Bochkarev, Russ Chem Bull 2014, 63, 848.
| Crossref | GoogleScholarGoogle Scholar |
[33] H Peng, Z Zhang, R Qi, Y Yao, Y Zhang, Q Shen, Y Cheng, Inorg Chem 2008, 47, 9828.
| Crossref | GoogleScholarGoogle Scholar | 18828586PubMed |
[34] A D’Aleo, F Pointillart, L Ouahab, C Andraud, O Maury, Coord Chem Rev 2012, 256, 1604.
| Crossref | GoogleScholarGoogle Scholar |
[35] J-CG Bünzli,, Coord Chem Rev 2015, 293–294, 19.
| Crossref | GoogleScholarGoogle Scholar |
[36] LN Puntus, A-S Chauvin, S Varbanov, J-CG Bünzli,, Eur J Inorg Chem 2007, 2007, 2315.
| Crossref | GoogleScholarGoogle Scholar |
[37] A D’Aleo, A Bourdolle, S Brustlein, T Fauquier, A Grichine, A Duperray, PL Baldeck, C Andraud, S Brasselet, O Maury, Angew Chem Int Ed 2012, 51, 6622.; Angew Chem 2012, 124, 6726.
| Crossref | GoogleScholarGoogle Scholar |
[38] F Pointillart, T Cauchy, O Maury, Y Le Gal, S Golhen, O Cador, L Ouahab, Chem Eur J 2010, 16, 11926.
| Crossref | GoogleScholarGoogle Scholar | 20827706PubMed |
[39] DB Nie, ZQ Chen, ZQ Bian, JQ Zhou, ZW Liu, FF Chen, YL Zhao, CH Huang, New J Chem 2007, 31, 1639.
| Crossref | GoogleScholarGoogle Scholar |
[40] VA Ilichev, AV Rozhkov, RV Rumyantcev, GK Fukin, ID Grishin, AV Dmitriev, DA Lypenko, EI Maltsev, AN Yablonskiy, BA Andreev, MN Bochkarev, Dalton Trans 2017, 46, 3041.
| Crossref | GoogleScholarGoogle Scholar | 28207021PubMed |
[41] SAINT. Data reduction and correction program. Madison, WI: Bruker AXS; 2014.
[42] L Krause, R Herbst-Irmer, GM Sheldrick, D Stalke, J Appl Crystallogr 2015, 48, 3.
| Crossref | GoogleScholarGoogle Scholar | 26089746PubMed |
[43] GM Sheldrick, Acta Crystallogr, Sect A: Found Adv 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[44] GM Sheldrick, Acta Crystallogr, Sect C: Struct Chem 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |