Recent Progress in Stimuli-Induced Morphology Transformations of Block Copolymer Assemblies
Haoxiang Zeng A and Derrick A. Roberts A B CA Key Center for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
B Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
C Corresponding author. Email: derrick.roberts@sydney.edu.au
Haoxiang Zeng received his B.Sc. from Taiyuan University of Technology in China (2016) and M.Sc. from the National University of Singapore (2018). He then worked at the Max Planck Institute for Polymer Research as a research assistant (2019). In 2021, he started his Ph.D. at the University of Sydney in the group of Dr Derrick Roberts (co-supervised by Dr Markus Müllner), studying controlled shape-transformations of stimuli-responsive polymer self-assemblies. |
Derrick A. Roberts received his B.Sc. (2010) and M.Sc. (2012) from the University of Sydney and completed his Ph.D. at the University of Cambridge as a Gates Scholar (2013–2016). In 2017, he was awarded a Marie Skłowdowska Curie Fellowship to work with Professor Molly Stevens at the Karolinska Institute, Sweden. In mid-2019, he won an Australian Research Council DECRA Fellowship to start his independent research group at the University of Sydney. His research focuses on designing stimuli-responsive self-assembled materials. |
Australian Journal of Chemistry 75(2) 55-64 https://doi.org/10.1071/CH21200
Submitted: 16 August 2021 Accepted: 15 October 2021 Published: 17 November 2021
Abstract
Synthetic polymers are well known to self-assemble into a wide range of remarkable architectures with properties directly arising from their nanoscale morphologies. The rapid development of post-polymerisation modification reactions and techniques like polymerisation induced self-assembly (PISA) have fuelled new research into ‘smart’ polymer assemblies that can undergo well defined morphological transformations in response to external stimuli. These transformations can be used to modulate the properties of polymer assemblies in a ‘switchable’ fashion, offering great potential to generate smart materials that can dynamically adapt to changes in complex environments. This review aims to highlight key developments from the past five years in this rapidly evolving field, and we discuss innovations in polymer design, stimuli-responsivity mechanisms, transformation behaviours, and potential applications of shape-transformable polymeric nanostructures.
Keywords: block copolymers, stimuli-responsive polymers, self-assembly, morphology transformations, RAFT, ATRP, PISA, nanoparticles, nanostructures, supramolecular chemistry, smart materials, transmission electron microscopy.
References
[1] R. B. Grubbs, Z. Sun, Chem. Soc. Rev. 2013, 42, 7436.| Crossref | GoogleScholarGoogle Scholar | 23801143PubMed |
[2] A. P. Blum, J. K. Kammeyer, A. M. Rush, C. E. Callmann, M. E. Hahn, N. C. Gianneschi, J. Am. Chem. Soc. 2015, 137, 2140.
| Crossref | GoogleScholarGoogle Scholar | 25474531PubMed |
[3] M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 2010, 9, 101.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. Blanazs, S. P. Armes, A. J. Ryan, Macromol. Rapid Commun. 2009, 30, 267.
| Crossref | GoogleScholarGoogle Scholar | 21706604PubMed |
[5] M. Wei, Y. Gao, X. Li, M. J. Serpe, Polym. Chem. 2017, 8, 127.
| Crossref | GoogleScholarGoogle Scholar |
[6] H. Feng, X. Lu, W. Wang, N.-G. Kang, J. W. Mays, Polymers 2017, 9, 494.
| Crossref | GoogleScholarGoogle Scholar |
[7] Y. Shao, H. Dai, M. Zhao, B. Li, J. Yao, W.-B. Zhang, H. Li, Polymers 2020, 12, 819.
| Crossref | GoogleScholarGoogle Scholar |
[8] F. Ahmed, R. I. Pakunlu, A. Brannan, F. Bates, T. Minko, D. E. Discher, J. Controlled Release 2006, 116, 150.
| Crossref | GoogleScholarGoogle Scholar |
[9] J. Zhang, Switchable and Responsive Surfaces and Materials for Biomedical Applications 2014 (Elsevier: Amsterdam)
[10] G. Kocak, C. Tuncer, V. Bütün, Polym. Chem. 2017, 8, 144.
| Crossref | GoogleScholarGoogle Scholar |
[11] O. Bertrand, J.-F. Gohy, Polym. Chem. 2017, 8, 52.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. Mu, J. Lin, P. Huang, X. Chen, Chem. Soc. Rev. 2018, 47, 5554.
| Crossref | GoogleScholarGoogle Scholar | 29856446PubMed |
[13] M. Huo, H. Du, M. Zeng, L. Pan, T. Fang, X. Xie, Y. Wei, J. Yuan, Polym. Chem. 2017, 8, 2833.
| Crossref | GoogleScholarGoogle Scholar |
[14] W. Ding, D. Wu, N. Kameta, Q. Wei, M. Kogiso, Nanoscale 2018, 10, 20321.
| Crossref | GoogleScholarGoogle Scholar | 30375630PubMed |
[15] Y. Wu, H. Tan, Y. Yang, Y. Li, J. Xu, L. Zhang, J. Zhu, Langmuir 2018, 34, 11495.
| Crossref | GoogleScholarGoogle Scholar | 30149715PubMed |
[16] M. A. C. Stuart, W. T. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, Nat. Mater. 2010, 9, 101.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. Blanazs, J. Madsen, G. Battaglia, A. J. Ryan, S. P. Armes, J. Am. Chem. Soc. 2011, 133, 16581.
| Crossref | GoogleScholarGoogle Scholar | 21846152PubMed |
[18] J. F. Reuther, D. A. Siriwardane, R. Campos, B. M. Novak, Macromolecules 2015, 48, 6890.
| Crossref | GoogleScholarGoogle Scholar |
[19] Y. Shi, Z. Chen, J. Mater. Chem. C Mater. Opt. Electron. Devices 2018, 6, 11817.
| Crossref | GoogleScholarGoogle Scholar |
[20] A. Zhang, K. Jung, A. Li, J. Liu, C. Boyer, Prog. Polym. Sci. 2019, 99, 101164.
| Crossref | GoogleScholarGoogle Scholar |
[21] W. Zhang, C. Gao, J. Mater. Chem. A Mater. Energy Sustain. 2017, 5, 16059.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y. Pei, A. B. Lowe, P. J. Roth, Macromol. Rapid Commun. 2017, 38, 1600528.
| Crossref | GoogleScholarGoogle Scholar |
[23] N. J. W. Penfold, J. Yeow, C. Boyer, S. P. Armes, ACS Macro Lett. 2019, 8, 1029.
| Crossref | GoogleScholarGoogle Scholar |
[24] H. Phan, V. Taresco, J. Penelle, B. Couturaud, Biomater. Sci. 2021, 9, 38.
| Crossref | GoogleScholarGoogle Scholar | 33179646PubMed |
[25] B. J. Toebes, D. A. Wilson, Soft Matter 2021, 17, 1724.
| Crossref | GoogleScholarGoogle Scholar | 33464275PubMed |
[26] R. S. M. Rikken, H. Engelkamp, R. J. M. Nolte, J. C. Maan, J. C. M. van Hest, D. A. Wilson, P. C. M. Christianen, Nat. Commun. 2016, 7, 12606.
| Crossref | GoogleScholarGoogle Scholar |
[27] J.-D. Ding, W.-J. Jin, Z. Pei, Y. Pei, Chem. Commun. 2020, 56, 10113.
| Crossref | GoogleScholarGoogle Scholar |
[28] Y. Bai, X.-d. Fan, W. Tian, T.-t. Liu, H. Yao, Z. Yang, H.-t. Zhang, W.-b. Zhang, Polym. Chem. 2015, 6, 732.
| Crossref | GoogleScholarGoogle Scholar |
[29] H. Zhang, X. Fan, R. Suo, H. Li, Z. Yang, W. Zhang, Y. Bai, H. Yao, W. Tian, Chem. Commun. 2015, 51, 15366.
| Crossref | GoogleScholarGoogle Scholar |
[30] H. Sun, C. P. Kabb, Y. Dai, M. R. Hill, I. Ghiviriga, A. P. Bapat, B. S. Sumerlin, Nat. Chem. 2017, 9, 817.
| Crossref | GoogleScholarGoogle Scholar | 28754942PubMed |
[31] A. M. Hanlon, C. K. Lyon, E. B. Berda, Macromolecules 2016, 49, 2.
| Crossref | GoogleScholarGoogle Scholar |
[32] H. Frisch, B. T. Tuten, C. Barner-Kowollik, Isr. J. Chem. 2020, 60, 86.
| Crossref | GoogleScholarGoogle Scholar |
[33] F. F. Sahle, M. Gulfam, T. L. Lowe, Drug Discov. Today 2018, 23, 992.
| Crossref | GoogleScholarGoogle Scholar | 29653291PubMed |
[34] U. Kauscher, M. N. Holme, M. Björnmalm, M. M. Stevens, Adv. Drug Deliv. Rev. 2019, 138, 259.
| Crossref | GoogleScholarGoogle Scholar | 30947810PubMed |
[35] M. Meewes, J. Ricka, M. De Silva, R. Nyffenegger, T. Binkert, Macromolecules 1991, 24, 5811.
| Crossref | GoogleScholarGoogle Scholar |
[36] D. S. Simmons, I. C. Sanchez, Macromolecules 2008, 41, 5885.
| Crossref | GoogleScholarGoogle Scholar |
[37] A. Koochaki, M. R. Moghbeli, S. J. Nikkhah, Curr. Appl. Phys. 2018, 18, 1313.
| Crossref | GoogleScholarGoogle Scholar |
[38] D. Giaouzi, S. Pispas, Eur. Polym. J. 2020, 135, 109867.
| Crossref | GoogleScholarGoogle Scholar |
[39] Y. Yan, C. Gao, J. Li, T. Zhang, G. Yang, Z. Wang, Z. Hua, Biomacromolecules 2020, 21, 613.
| Crossref | GoogleScholarGoogle Scholar | 31841316PubMed |
[40] L. A. Wells, F. Lasowski, S. D. Fitzpatrick, H. Sheardown, Crit. Rev. Biomed. Eng. 2010, 38, 487.
| 21303321PubMed |
[41] Y. Huang, R. Dong, X. Zhu, D. Yan, Soft Matter 2014, 10, 6121.
| Crossref | GoogleScholarGoogle Scholar | 25046479PubMed |
[42] J. Cui, A. Del Campo, in Smart Polymers and their Applications (Eds M. R. Aguilar, J. S. Román) 2014, pp. 93–133 (Elsevier: Amsterdam).
[43] Y. Hao, J. Meng, S. Wang, Chin. Chem. Lett. 2017, 28, 2085.
| Crossref | GoogleScholarGoogle Scholar |
[44] J. M. Schumers, C. A. Fustin, J. F. Gohy, Macromol. Rapid Commun. 2010, 31, 1588.
| Crossref | GoogleScholarGoogle Scholar | 21567570PubMed |
[45] E. R. Ruskowitz, C. A. DeForest, Nat. Rev. Mater. 2018, 3, 17087.
| Crossref | GoogleScholarGoogle Scholar |
[46] H. Sun, C. P. Kabb, M. B. Sims, B. S. Sumerlin, Prog. Polym. Sci. 2019, 89, 61.
| Crossref | GoogleScholarGoogle Scholar |
[47] S. Guan, Z. Deng, T. Huang, W. Wen, Y. Zhao, A. Chen, ACS Macro Lett. 2019, 8, 460.
| Crossref | GoogleScholarGoogle Scholar |
[48] J. Lee, K. H. Ku, J. Kim, Y. J. Lee, S. G. Jang, B. J. Kim, J. Am. Chem. Soc. 2019, 141, 15348.
| Crossref | GoogleScholarGoogle Scholar | 31433168PubMed |
[49] F. Ofridam, M. Tarhini, N. Lebaz, É. Gagnière, D. Mangin, A. Elaissari, Polym. Adv. Technol. 2021, 32, 1455.
| Crossref | GoogleScholarGoogle Scholar |
[50] J. Lee, K. H. Ku, C. H. Park, Y. J. Lee, H. Yun, B. J. Kim, ACS Nano 2019, 13, 4230.
| Crossref | GoogleScholarGoogle Scholar | 30856312PubMed |
[51] J. Zhang, B. Farias-Mancilla, I. Kulai, S. Hoeppener, B. Lonetti, S. Prévost, J. Ulbrich, M. Destarac, O. Colombani, U. S. Schubert, C. Guerrero-Sanchez, S. Harrisson, Angew. Chem. Int. Ed. 2021, 60, 4925.
| Crossref | GoogleScholarGoogle Scholar |
[52] W. Cai, W. Wan, C. Hong, C. Huang, C. Pan, Soft Matter 2010, 6, 5554.
| Crossref | GoogleScholarGoogle Scholar |
[53] N. J. Warren, S. P. Armes, J. Am. Chem. Soc. 2014, 136, 10174.
| Crossref | GoogleScholarGoogle Scholar | 24968281PubMed |
[54] J. Tan, H. Sun, M. Yu, B. S. Sumerlin, L. Zhang, ACS Macro Lett. 2015, 4, 1249.
| Crossref | GoogleScholarGoogle Scholar |
[55] J. Yeow, O. R. Sugita, C. Boyer, ACS Macro Lett. 2016, 5, 558.
| Crossref | GoogleScholarGoogle Scholar |
[56] X. Wang, Z. An, Macromol. Rapid Commun. 2019, 40, 1800325.
| Crossref | GoogleScholarGoogle Scholar |
[57] F. D’Agosto, J. Rieger, M. Lansalot, Angew. Chem. Int. Ed. 2020, 59, 8368.
| Crossref | GoogleScholarGoogle Scholar |
[58] T. R. Guimarães, Y. L. Bong, S. W. Thompson, G. Moad, S. Perrier, P. B. Zetterlund, Polym. Chem. 2021, 12, 122.
| Crossref | GoogleScholarGoogle Scholar |
[59] M. Huo, Y. Zhang, M. Zeng, L. Liu, Y. Wei, J. Yuan, Macromolecules 2017, 50, 8192.
| Crossref | GoogleScholarGoogle Scholar |
[60] H. Zeng, L. Stewart‐Yates, L. M. Casey, N. Bampos, D. A. Roberts, ChemPlusChem 2020, 85, 1249.
| Crossref | GoogleScholarGoogle Scholar | 32529789PubMed |
[61] M. J. Derry, L. A. Fielding, N. J. Warren, C. J. Mable, A. J. Smith, O. O. Mykhaylyk, S. P. Armes, Chem. Sci. 2016, 7, 5078.
| Crossref | GoogleScholarGoogle Scholar | 30155157PubMed |
[62] D. Li, M. Huo, L. Liu, M. Zeng, X. Chen, X. Wang, J. Yuan, Macromol. Rapid Commun. 2019, 40, 1900202.
| Crossref | GoogleScholarGoogle Scholar |
[63] R. Jain, V. K. Pal, S. Roy, Biomacromolecules 2020, 21, 4180.
| Crossref | GoogleScholarGoogle Scholar | 32786522PubMed |
[64] V. Kumar, T. M. Koyasseril-Yehiya, S. Thayumanavan, in Molecular Assemblies: Characterization and Applications (Ed. R. Nagarajan), ACS Symposium Series Vol. 1355, 2020, pp. 95–107 (ACS Publications).
[65] G. B. Qi, D. Zhang, F. H. Liu, Z. Y. Qiao, H. Wang, Adv. Mater. 2017, 29, 1703461.
| Crossref | GoogleScholarGoogle Scholar |
[66] D. B. Wright, A. Ramirez-Hernandez, M. A. Touve, A. S. Carlini, M. P. Thompson, J. P. Patterson, J. J. De Pablo, N. C. Gianneschi, ACS Macro Lett. 2019, 8, 676.
| Crossref | GoogleScholarGoogle Scholar |
[67] S. Y. Khor, J. F. Quinn, M. R. Whittaker, N. P. Truong, T. P. Davis, Macromol. Rapid Commun. 2019, 40, 1800438.
| Crossref | GoogleScholarGoogle Scholar |
[68] S. Panja, D. J. Adams, Chem. Soc. Rev. 2021, 50, 5165.
| Crossref | GoogleScholarGoogle Scholar | 33646219PubMed |
[69] R. Deng, L. Zheng, X. Mao, B. Li, J. Zhu, Small 2021, 17, 2006132.
| Crossref | GoogleScholarGoogle Scholar |
[70] J. Zhuang, M. R. Gordon, J. Ventura, L. Li, S. Thayumanavan, Chem. Soc. Rev. 2013, 42, 7421.
| Crossref | GoogleScholarGoogle Scholar | 23765263PubMed |
[71] K. M. Herbert, S. Schrettl, S. J. Rowan, C. Weder, Macromolecules 2017, 50, 8845.
| Crossref | GoogleScholarGoogle Scholar |
[72] E. Malikmammadov, N. Hasirci, in Smart Polymers and their Applications (Eds M. R. Aguilar, J. S. Román) 2019, pp. 255–278 (Elsevier: Amsterdam).
[73] Y. M. Zhang, Y. H. Liu, Y. Liu, Adv. Mater. 2020, 32, 1806158.
| Crossref | GoogleScholarGoogle Scholar |
[74] A. Bratek-Skicki, Appl. Surf. Sci. Adv. 2021, 4, 100068.
| Crossref | GoogleScholarGoogle Scholar |
[75] C. A. Blencowe, A. T. Russell, F. Greco, W. Hayes, D. W. Thornthwaite, Polym. Chem. 2011, 2, 773.
| Crossref | GoogleScholarGoogle Scholar |
[76] A. Alouane, R. Labruère, T. Le Saux, F. Schmidt, L. Jullien, Angew. Chem. 2015, 127, 7600.
| Crossref | GoogleScholarGoogle Scholar |
[77] Z. Deng, S. Yuan, R. X. Xu, H. Liang, S. Liu, Angew. Chem. Int. Ed. 2018, 57, 8896.
| Crossref | GoogleScholarGoogle Scholar |
[78] D. A. Roberts, B. S. Pilgrim, T. N. Dell, M. M. Stevens, Chem. Sci. 2020, 11, 3713.
| Crossref | GoogleScholarGoogle Scholar | 34094059PubMed |
[79] A. Sagi, R. Weinstain, N. Karton, D. Shabat, J. Am. Chem. Soc. 2008, 130, 5434.
| Crossref | GoogleScholarGoogle Scholar | 18376834PubMed |
[80] G. I. Peterson, M. B. Larsen, A. J. Boydston, Macromolecules 2012, 45, 7317.
| Crossref | GoogleScholarGoogle Scholar |
[81] B. Fan, J. F. Trant, A. D. Wong, E. R. Gillies, J. Am. Chem. Soc. 2014, 136, 10116.
| Crossref | GoogleScholarGoogle Scholar | 24956012PubMed |
[82] G. Liu, X. Wang, J. Hu, G. Zhang, S. Liu, J. Am. Chem. Soc. 2014, 136, 7492.
| Crossref | GoogleScholarGoogle Scholar | 24786176PubMed |
[83] H. Kim, A. D. Brooks, A. M. DiLauro, S. T. Phillips, J. Am. Chem. Soc. 2020, 142, 9447.
| Crossref | GoogleScholarGoogle Scholar | 32330033PubMed |