Reduction Chemistry of Natural Pyrethrins and Preliminary Insecticidal Activity of Reduced Pyrethrins
Todd E. Markham A B C , Andrew C. Kotze D , Peter J. Duggan A C E and Martin R. Johnston A B EA College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia.
B Flinders Institute for Nanoscale Science and Technology, Flinders University, Adelaide, SA 5042, Australia.
C CSIRO Manufacturing, Bag 10, Clayton South, Vic. 3169, Australia.
D CSIRO Agriculture and Food, St Lucia, Qld 4067, Australia.
E Corresponding authors. Email: peter.duggan@csiro.au; martin.johnston@flinders.edu.au
Australian Journal of Chemistry 74(4) 268-281 https://doi.org/10.1071/CH20302
Submitted: 9 October 2020 Accepted: 24 November 2020 Published: 11 December 2020
Journal Compilation © CSIRO 2021 Open Access CC BY
Abstract
The natural extract pyrethrum is an insecticidal oil derived from Tanacetum cinerariifolium that is commonly used in domestic and agricultural pesticides. The major constituents of the extract are the Pyrethrins, six esters that provide pyrethrum with its insecticidal properties. These Pyrethrins readily degrade through several environmental means and as such, there can be significant Pyrethrin losses during processing and long-term storage of pyrethrum-based insecticides. This work attempts to alleviate the effect of these degradative processes through the pursuit of stabilised Pyrethrins by chemically removing oxidatively sensitive functionality. Several reduced Pyrethrin analogues were produced and a method to convert the more sensitive Pyrethrins present in the pyrethrum concentrate into their respective more stable jasmolin counterparts, as a mixture with the over-reduced tetrahydropyrethrins, was developed. All other reduction processes abolished insecticidal activity against Lucilia cuprina larvae, whereas some isomerised analogues showed comparable potency with the individual natural pyrethrin esters. This work has revealed new insights into the structure–activity relationships in this unique class of insecticide.
References
[1] J. E. Casida, Environ. Health Perspect. 1980, 34, 189.| Crossref | GoogleScholarGoogle Scholar | 6993201PubMed |
[2] J. A. Freemont, S. W. Littler, O. E. Hutt, S. Mauger, A. G. Meyer, D. A. Winkler, M. G. Kerr, J. H. Ryan, H. F. Cole, P. J. Duggan, J. Agric. Food Chem. 2016, 64, 7134.
| Crossref | GoogleScholarGoogle Scholar | 27599033PubMed |
[3] L. Crombie, P. Hemesley, G. Pattenden, J. Chem. Soc. 1969, 1016.
[4] B. L. Atkinson, A. J. Blackman, H. Faber, J. Agric. Food Chem. 2004, 52, 280.
| Crossref | GoogleScholarGoogle Scholar | 14733509PubMed |
[5] M. J. Bullivant, G. Pattenden, Pestic. Sci. 1976, 7, 231.
| Crossref | GoogleScholarGoogle Scholar |
[6] E. V. Minello, F. Lai, M. T. Zonchello, M. Melis, M. Russo, P. Cabras, J. Agric. Food Chem. 2005, 53, 8302.
| Crossref | GoogleScholarGoogle Scholar | 16218679PubMed |
[7] M. Chen, Y. Du, G. Zhu, G. Takamatsu, M. Ihara, K. Matsuda, B. S. Zhorov, K. Dong, Pestic. Biochem. Physiol. 2018, 151, 82.
| Crossref | GoogleScholarGoogle Scholar | 30704718PubMed |
[8] D. G. Beddie, A. W. Farnham, B. P. S. Khambay, Pestic. Sci. 1996, 48, 175.
| Crossref | GoogleScholarGoogle Scholar |
[9] F. Zhu, J. Wigginton, A. Romero, A. Moore, K. Ferguson, R. Palli, M. F. Potter, K. F. Haynes, S. R. Palli, Arch. Insect Biochem. Physiol. 2010, 73, 245.
| 20301216PubMed |
[10] Y.-L. Chen, J. E. Casida, J. Agric. Food Chem. 1969, 17, 208.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. F. Bramwell, L. Crombie, P. Hemesley, G. Pattenden, Tetrahedron 1969, 25, 1727.
| Crossref | GoogleScholarGoogle Scholar | 5796569PubMed |
[12] I.-H. Wang, V. Subramanian, R. Moorman, J. Burleson, J. Ko, J. Chromatogr. A 1997, 766, 277.
| Crossref | GoogleScholarGoogle Scholar |
[13] N. H. Bagnall, B. M. Hines, A. J. Lucke, P. K. Gupta, R. C. Reid, D. P. Fairlie, A. C. Kotze, Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 51.
| Crossref | GoogleScholarGoogle Scholar | 28110187PubMed |
[14] A. C. Kotze, N. H. Bagnall, A. P. Ruffell, R. Pearson, Med. Vet. Entomol. 2014, 28, 297.
| Crossref | GoogleScholarGoogle Scholar | 24417268PubMed |
[15] H. C. Brown, R. Liotta, G. W. Kramer, J. Org. Chem. 1978, 43, 1058.
| Crossref | GoogleScholarGoogle Scholar |
[16] H. C. Brown, S. Krishnamurthy, N. M. Yoon, J. Org. Chem. 1976, 41, 1778.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. Krishnamurthy, H. C. Brown, J. Org. Chem. 1977, 42, 1197.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. S. Varma, G. W. Kabalka, Synth. Commun. 1985, 15, 985.
| Crossref | GoogleScholarGoogle Scholar |
[19] G. R. Meyer, J. Chem. Educ. 1981, 58, 628.
| Crossref | GoogleScholarGoogle Scholar |
[20] W. A. Gersdorff, J. Econ. Entomol. 1947, 40, 878.
| Crossref | GoogleScholarGoogle Scholar | 18858107PubMed |
[21] H. L. Haller, W. N. Sullivan, J. Econ. Entomol. 1938, 31, 276.
| Crossref | GoogleScholarGoogle Scholar |
[22] L. Crombie, M. Elliott, S. H. Harper, J. Chem. Soc. 1950, 971.
| Crossref | GoogleScholarGoogle Scholar |
[23] D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621.
| Crossref | GoogleScholarGoogle Scholar | 26061159PubMed |
[24] G. Brieger, T. J. Nestrick, Chem. Rev. 1974, 74, 567.
| Crossref | GoogleScholarGoogle Scholar |
[25] D. Gauthier, A. T. Lindhardt, E. P. K. Olsen, J. Overgaard, T. Skrydstrup, J. Am. Chem. Soc. 2010, 132, 7998.
| Crossref | GoogleScholarGoogle Scholar | 20481527PubMed |
[26] R. Shen, T. Chen, Y. Zhao, R. Qiu, Y. Zhou, S. Yin, X. Wang, M. Goto, L.-B. Han, J. Am. Chem. Soc. 2011, 133, 17037.
| Crossref | GoogleScholarGoogle Scholar | 21916436PubMed |
[27] E. H. P. Tan, G. C. Lloyd-Jones, J. N. Harvey, A. J. J. Lennox, B. M. Mills, Angew. Chem. Int. Ed. 2011, 50, 9602.
| Crossref | GoogleScholarGoogle Scholar |
[28] J. Yu, J. B. Spencer, J. Org. Chem. 1997, 62, 8618.
| Crossref | GoogleScholarGoogle Scholar |
[29] C. Smit, M. W. Fraaije, A. J. Minnaard, J. Org. Chem. 2008, 73, 9482.
| Crossref | GoogleScholarGoogle Scholar | 18975908PubMed |
[30] Y. Imada, H. Iida, T. Naota, J. Am. Chem. Soc. 2005, 127, 14544.
| Crossref | GoogleScholarGoogle Scholar | 16231886PubMed |
[31] B. Pieber, S. T. Martinez, D. Cantillo, C. O. Kapper, Angew. Chem. Int. Ed. 2013, 52, 10241.
| Crossref | GoogleScholarGoogle Scholar |
[32] T. G. E. Davies, L. M. Field, P. N. R. Usherwood, M. S. Williamson, IUBMB Life 2007, 59, 151.
| Crossref | GoogleScholarGoogle Scholar |
[33] R. M. Sawicki, M. Elliott, J. C. Gower, M. Snarey, E. M. Thain, J. Sci. Food Agric. 1962, 13, 172.
| Crossref | GoogleScholarGoogle Scholar |
[34] J. Ward, Chem. Ind. 1953, 586.
[35] M. Kawamoto, M. Moriyama, Y. Ashida, N. Matsudo, Y. Tanabe, J. Org. Chem. 2020, 85, 2984.
| Crossref | GoogleScholarGoogle Scholar | 31912734PubMed |