Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Thermal Thickening System Based on the Self-Assembly of a Zwitterionic Hydrophobic Association Polymer and Surfactant

Lang Liu A , Shaohua Gou https://orcid.org/0000-0003-0879-4602 A B C , Yongtao Ma A , Lihua Zhou A , Yang He A , Ling Liu A , Lan Tang A and Shenwen Fang A B C
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.

B Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, China.

C Corresponding authors. Email: shaohuagou@swpu.edu.cn; 1104680134@qq.com

Australian Journal of Chemistry 74(4) 238-244 https://doi.org/10.1071/CH20223
Submitted: 15 July 2020  Accepted: 25 September 2020   Published: 20 October 2020

Abstract

The zwitterionic monomer, 1-(2-hydroxypropyl-sulfo)-acrylamide ethyl-N,N-dimethyl ammonium chloride (MeSA) was copolymerised with acrylamide (AM), acrylic acid (AA), and a hydrophobic monomer N,N-diallyl oleamide (DNDA) to obtain the zwitterionic hydrophobic association polymer AM/AA/DNDA/MeSA. The structure of the hydrophobic association polymer was characterised by 1H NMR, FT-IR, and intrinsic viscosity studies. The self-assembly system of the polymer and the surfactant Tween-40 was then formed, and the rheological properties and adsorptive performance of the self-assembly system were investigated. The result showed that the polymer–surfactant self-assembly system had good properties such as thickening, temperature resistance, salt resistance, and shear resistance. It is shown that the thermal thickening phenomenon, which allows the system to be used as a good petrochemical product in a high-temperature environment, provides a vital research foundation for the future application of this kind of self-assembly system.


References

[1]  J. J. Taber, F. D. Martin, R. S. Seright, SPE Reserv. Eng. 1997, 12, 189.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. Riahinezhad, L. Romero-Zerón, N. McManus, A. Penlidis, Fuel 2017, 203, 269.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  D. A. Z. Wever, F. Picchioni, A. A. Broekhuis, Prog. Polym. Sci. 2011, 36, 1558.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. J. Caulfield, G. G. Qiao, D. H. Solomon, Chem. Rev. 2002, 102, 3067.
         | Crossref | GoogleScholarGoogle Scholar | 12222982PubMed |

[5]  H. Ehtesabi, M. M. Ahadian, V. Taghikhani, M. H. Ghazanfari, Energy Fuels 2014, 28, 423.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  S. H. Gou, Y. He, Y. T. Ma, S. Luo, Q. Zhang, D. Jing, Q. P. Guo, RSC Adv. 2015, 5, 51549.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. H. Gou, T. Yin, Z. B. Ye, W. C. Jiang, C. Yang, Y. T. Ma, M. L. Feng, Q. Xia, J. Appl. Polym. Sci. 2014, 131, 40727.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  C. R. Zhong, P. Y. Luo, J. Polym. Sci. Part B: Polym. Phys. 2007, 45, 826.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Q. Wu, S. H. Gou, J. L. Huang, G. J. Fan, S. W. Li, M. Y. Liu, RSC Adv. 2019, 9, 16406.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  G. S. Su, Y. Luo, F. Li, X. R. Yu, Geosyst. Eng. 2019, 22, 30.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  P. Kujawa, A. A. Hayet, J. Selb, O. Candau, J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 1640.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. Dragan, L. Ghimici, Polymer 2001, 42, 2887.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  B. H. Hutchinson, C. L. Mccormick, Polymer 1986, 27, 623.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  J. F. Fang, B. H. Wallikewitz, F. Gao, G. L. Tu, C. Muller, G. Pace, R. H. Friend, W. T. Huck, J. Am. Chem. Soc. 2011, 133, 683.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  H. L. Ricks-Laskoski, A. W. Snow, J. Am. Chem. Soc. 2006, 128, 12402.
         | Crossref | GoogleScholarGoogle Scholar | 16984175PubMed |

[16]  K. T. Huang, K. Ishihara, C. J. Huang, Biomacromolecules 2019, 20, 3524.
         | Crossref | GoogleScholarGoogle Scholar | 31381318PubMed |

[17]  B. Grassl, J. Francois, L. Billon, Polym. Int. 2001, 50, 1162.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  R. R. Maddikeri, S. Colak, S. P. Gido, G. N. Tew, Biomacromolecules 2011, 12, 3412.
         | Crossref | GoogleScholarGoogle Scholar | 21902263PubMed |

[19]  J. A. Shashkina, O. E. Philippova, Y. D. Zaroslov, A. R. Khokhlov, T. A. Pryakhina, I. V. Blagodatskikh, Langmuir 2005, 21, 1524.
         | Crossref | GoogleScholarGoogle Scholar | 15697303PubMed |

[20]  S. Palchowdhury, B. L. Bhargava, J. Phys. Chem. B 2015, 119, 11815.
         | Crossref | GoogleScholarGoogle Scholar | 26256805PubMed |

[21]  S. Sen, D. Sukul, P. Dutta, K. Bhattacharyya, J. Phys. Chem. A 2001, 105, 7495.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. Sedlak, J. Phys. Chem. B 2012, 116, 2356.
         | Crossref | GoogleScholarGoogle Scholar | 22280359PubMed |

[23]  S. Y. Han, S. S. Cao, Y. M. Wang, J. Q. Wang, D. H. Xia, H. Xu, X. B. Zhao, J. R. Lu, Chem. – Eur. J. 2011, 17, 13095.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  F. Jiang, W. F. Pu, J. Mater. Sci. 2020, 55, 3130.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. Talwar, A. S. Krishnan, J. P. Hinestroza, B. Pourdeyhimi, S. A. Khan, Macromolecules 2010, 43, 7650.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  T. Yang, S. K. Choi, Y. R. Lee, Y. Cho, J. W. Kim, Polym. Chem. 2016, 7, 3471.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  M. Weickenmeier, G. Wenz, J. Huff, Macromol. Rapid Commun. 1997, 18, 1117.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  Y. Y. Li, T. Y. Zhou, Z. Y. Yu, F. Wang, D. J. Shi, Z. B. Ni, M. Q. Chen, New J. Chem. 2020, 44, 4061.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. A. Haruna, S. Pervaiz, Z. L. Hu, E. Nourafkan, D. S. Wen, J. Appl. Polym. Sci. 2019, 136, 47582.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  X. F. Liu, L. L. Dong, Y. Fang, J. Surfactants Deterg. 2011, 14, 497.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  D. W. Tondo, E. C. Leopoldino, B. S. Souza, G. A. Micke, A. C. Costa, H. D. Fiedler, C. A. Bunton, F. Nome, Langmuir 2010, 26, 15754.
         | Crossref | GoogleScholarGoogle Scholar | 20849116PubMed |

[32]  H. Diamant, D. Andelman, Europhys. Lett. 1999, 48, 170.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  M. Shibayama, M. Uesaka, S. Inamoto, H. Mihara, S. Nomura, Macromolecules 1996, 29, 885.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  C. Shi, B. Y. Dai, M. Liu, Z. X. Xu, J. Macromol. Sci. Part B: Phys. 2014, 53, 662.
         | Crossref | GoogleScholarGoogle Scholar |