Synthesis of a Novel Library of 1-Substituted Pyrido[1,2-a]benzimidazoles
Satyanarayana Gadde A B , Yun Cheuk Leung A , Mohan Bhadbade A , Belamy B. Cheung B C , David StC. Black A D and Naresh Kumar A DA School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
B Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia.
C School of Women’s and Children’s Health, The University of New South Wales, Sydney, Randwick, NSW 2031, Australia.
D Corresponding authors. Email: d.black@unsw.edu.au; n.kumar@unsw.edu.au
Australian Journal of Chemistry 73(12) 1208-1218 https://doi.org/10.1071/CH20173
Submitted: 30 May 2020 Accepted: 30 July 2020 Published: 28 August 2020
Journal Compilation © CSIRO 2020 Open Access CC BY-NC-ND
Abstract
The reactivity and synthesis of new analogues of pyrido[1,2-a]benzimidazoles have been explored. Twenty-three derivatives bearing phenoxy, thiophenoxy, aniline, and aryl groups at the 1-position were successfully synthesised in 25–91 % yield, via nucleophilic substitution, Buchwald–Hartwig amination, and Suzuki coupling type processes. Solvent free synthetic protocols were employed to achieve the nucleophilic substitution of anilines with electron donating groups or moderately electron withdrawing groups on a sterically demanding intermediate (7a). An unusual polycyclic heterocycle was identified as a side-product during this work: a dimeric bis(pyrido[1,2-a]benzimidazole).
References
[1] E. S. A. M. Badawey, T. Kappe, Eur. J. Med. Chem. 1999, 34, 663.[2] J. S. Bae, D. W. Lee, D. H. Lee, D. S. Jeong, WO2007011163A1 2007.
[3] H. L. Koo, H. L. Dupont, Curr. Opin. Gastroenterol. 2010, 26, 17.
| Crossref | GoogleScholarGoogle Scholar | 19881343PubMed |
[4] S. K. Kotovskaya, Z. M. Baskakova, V. N. Charushin, O. N. Chupakhin, E. F. Belanov, N. I. Bormotov, S. M. Balakhnin, O. A. Serova, JP 659160 1962.
[5] M. Hammad, A. Mequid, M. El Ananni, N. Shafik, Egypt. J. Chem. 1987, 29, 5401.
[6] M.Takemura, H. Takashi, K. Kawakami, H. Takeshita, Y. Kimura, J. Watanabe, Y. Sugimoto, A. Kitamura, R. Nakajima, K. Kanai, T. Fujisawa, EP 1479681 2004.
[7] A. J. Ndakala, R. K. Gessner, P. W. Gitari, N. October, K. L. White, A. Hudson, F. Fakorede, D. M. Shackleford, M. Kaiser, C. Yeates, S. A. Charman, K. Chibale, J. Med. Chem. 2011, 54, 4581.
| Crossref | GoogleScholarGoogle Scholar | 21644541PubMed |
[8] S. M. Rida, F. S. G. Soliman, E. S. A. M. Badawey, T. Kappe, J. Heterocycl. Chem. 1988, 25, 1725.
| Crossref | GoogleScholarGoogle Scholar |
[9] E. Badawey, T. Kappe, Eur. J. Med. Chem. 1995, 30, 327.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. A. M. El-Hawash, E. A. M. Badawey, T. Kappe, Pharmazie 1999, 54, 341.
[11] S. V. Ryabukhin, A. S. Plaskon, D. M. Volochnyuk, A. A. Tolmachev, Synthesis 2007, 3155.
[12] (a) H. Wang, Y. Wang, C. Peng, J. Zhang, Q. Zhu, J. Am. Chem. Soc. 2010, 132, 13217.
| Crossref | GoogleScholarGoogle Scholar | 20822153PubMed |
(b) K. S. Masters, T. R. M. Rauws, A. K. Yadav, W. A. Herrebout, B. Van der Veken, B. U. W. Maes, Chem.– Eur. J. 2011, 17, 6315.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. Alajarin, A. Vidal, F. Tovar, Tetrahedron Lett. 2000, 41, 7029.
| Crossref | GoogleScholarGoogle Scholar |
[14] H. M. Refaat, Med. Chem. Res. 2012, 21, 1253.
| Crossref | GoogleScholarGoogle Scholar |
[15] S. Caddick, Tetrahedron 1995, 51, 10403.
| Crossref | GoogleScholarGoogle Scholar |
[16] P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Tetrahedron 2001, 57, 10229.
| Crossref | GoogleScholarGoogle Scholar |
[17] K. Tanaka, F. Toda, Chem. Rev. 2000, 100, 1025.
| Crossref | GoogleScholarGoogle Scholar | 11749257PubMed |
[18] M. A. P. Martins, C. P. Frizzo, D. N. Moreira, L. Buriol, P. Machado, Chem. Rev. 2009, 109, 4140.
| Crossref | GoogleScholarGoogle Scholar |
[19] B. Schlummer, U. Scholz, Adv. Synth. Catal. 2004, 346, 1599.
| Crossref | GoogleScholarGoogle Scholar |
[20] D. S. Surry, S. L. Buchwald, Chem. Sci. 2010, 1, 13.
| Crossref | GoogleScholarGoogle Scholar | 22384310PubMed |
[21] K. W. Anderson, R. E. Tundel, T. Ikawa, R. A. Altman, S. L. Buchwald, Angew. Chem. Int. Ed. 2006, 45, 6523.
| Crossref | GoogleScholarGoogle Scholar |
[22] N. Marion, E. C. Ecarnot, O. Navarro, D. Amoroso, A. Bell, S. P. Nolan, J. Org. Chem. 2006, 71, 3816.
| Crossref | GoogleScholarGoogle Scholar | 16674054PubMed |
[23] A. Shafir, S. L. Buchwald, J. Am. Chem. Soc. 2006, 128, 8742.
| Crossref | GoogleScholarGoogle Scholar | 16819863PubMed |
[24] R. A. Altman, B. P. Fors, S. L. Buchwald, Nat. Protoc. 2007, 2, 2881.
| Crossref | GoogleScholarGoogle Scholar | 18007623PubMed |
[25] X. H. Huang, S. L. Buchwald, Org. Lett. 2001, 3, 3417.
| Crossref | GoogleScholarGoogle Scholar |
[26] K. W. Anderson, R. E. Tundel, T. Ikawa, R. A. Altman, S. L. Buchwald, Angew. Chem. Int. Ed. 2006, 45, 6523.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. P. Wolfe, S. L. Buchwald, Angew. Chem. Int. Ed. 1999, 38, 2413.
| Crossref | GoogleScholarGoogle Scholar |
[28] C. W. Cheung, S. L. Buchwald, J. Org. Chem. 2012, 77, 7526.
| Crossref | GoogleScholarGoogle Scholar | 22838632PubMed |
[29] Crystallographic data for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2006266 (14a), CCDC 2006267 (14d) and CCDC 2017491 (13). X-Ray crystal structures were obtained by Donald Craig, Crystallography Laboratory, UNSW Analytical Centre, Sydney, Australia.