Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Selective Identification of Phenylalanine Using Cucurbit[7,8]uril-Based Fluorescent Probes

Xiao-Xia Li A , Wei-Tao Xu A , Xin-Yu Deng A , Li-Fei Tian A , Ying Huang B C and Zhu Tao https://orcid.org/0000-0002-8313-1430 A C
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.

B The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China.

C Corresponding authors. Email: 467992759@qq.com; gzutao@263.net

Australian Journal of Chemistry 74(4) 221-229 https://doi.org/10.1071/CH20029
Submitted: 5 February 2020  Accepted: 24 August 2020   Published: 1 October 2020

Abstract

The interactions of two host–guest inclusion complexes comprised of cucurbit[7]uril (Q[7]) and cucurbit[8]uril (Q[8]) with a derivative of toluidine blue O (TB) have been investigated using 1H NMR and fluorescence spectroscopy. The experimental results revealed that the Q[7] host interacts with a TB molecule to form a 1 : 1 inclusion complex and the Q[8] host interacts with two TB guest molecules to form a 1 : 2 inclusion complex. The inclusion of the TB guest molecule within the Q[7] host gave rise to significant fluorescence enhancement, whereas the inclusion of the TB guest molecule within the Q[8] host resulted in significant fluorescence quenching. Further recognition experiments involving a series of l-α-amino acids revealed that the TB@Q[7] inclusion fluorescence probe exhibits high selectivity for the recognition of phenylalanine via significant fluorescence quenching in an aqueous solution, whereas the TB@Q[8] inclusion fluorescence probe also exhibited high selectivity for phenylalanine recognition via fluorescence enhancement in an aqueous solution.


References

[1]  H. Cong, X. L. Ni, X. Xiao, Y. Huang, Q. J. Zhu, S. F. Xue, Z. Tao, L. F. Lindoy, G. Wei, Org. Biomol. Chem. 2016, 14, 4335.
         | Crossref | GoogleScholarGoogle Scholar | 26991738PubMed |

[2]  Y. Shen, L. Zou, Q. Wang, New J. Chem. 2017, 41, 7857.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Y. Wu, L. Xu, Y. Shen, Y. Wang, L. Zou, Q. Wang, X. Jiang, J. Liu, H. Tian, Chem. Commun. 2017, 53, 4070.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  B. C. Pemberton, R. Raghunathan, S. Volla, J. Sivaguru, Chem. – Eur. J. 2012, 18, 12178.
         | Crossref | GoogleScholarGoogle Scholar | 22945866PubMed |

[5]  K. I. Assaf, W. M. Nau, Chem. Soc. Rev. 2015, 44, 394.
         | Crossref | GoogleScholarGoogle Scholar | 25317670PubMed |

[6]  X. Hou, C. Ke, J. F. Stoddart, Chem. Soc. Rev. 2016, 45, 3766.
         | Crossref | GoogleScholarGoogle Scholar | 27030885PubMed |

[7]  S. Gadde, A. E. Kaifer, Curr. Org. Chem. 2011, 15, 27.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  H. Luo, L. X. Chen, Q. M. Ge, M. Liu, Z. Tao, Y. H. Zhou, H. Cong, J. Incl. Phenom. Macro. Chem. 2019, 95, 171.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  A. A. Elbashir, H. Y. Aboul-Enein, Crit. Rev. Anal. Chem. 2015, 45, 52.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M. Sayed, H. Pal, J. Mater. Chem. C Mater. Opt. Electron. Devices 2016, 4, 2685.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  R. Pinalli, A. Pedrini, E. Dalcanale, Chem. Soc. Rev. 2018, 47, 7006.
         | Crossref | GoogleScholarGoogle Scholar | 30175351PubMed |

[12]  D. Shetty, J. K. Khedkar, K. M. Park, K. Kim, Chem. Soc. Rev. 2015, 44, 8747.
         | Crossref | GoogleScholarGoogle Scholar | 26434388PubMed |

[13]  X. Ma, Y. Zhao, Chem. Rev. 2015, 115, 7794.
         | Crossref | GoogleScholarGoogle Scholar | 25415447PubMed |

[14]  W. Liu, S. K. Samanta, B. D. Smith, L. Isaacs, Chem. Soc. Rev. 2017, 46, 2391.
         | Crossref | GoogleScholarGoogle Scholar | 28191579PubMed |

[15]  K. I. Kuok, S. Li, I. W. Wyman, R. Wang, Ann. N. Y. Acad. Sci. 2017, 1398, 108.
         | Crossref | GoogleScholarGoogle Scholar | 28692768PubMed |

[16]  X. Zhou, P. Pathak, J. Jayawickramarajah, Chem. Commun. 2018, 54, 11668.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  L. Isaacs, Acc. Chem. Res. 2014, 47, 2052.
         | Crossref | GoogleScholarGoogle Scholar | 24785941PubMed |

[18]  A. E. Kaifer, Acc. Chem. Res. 2014, 47, 2160.
         | Crossref | GoogleScholarGoogle Scholar | 24884003PubMed |

[19]  Y. Chen, F. Huang, Z.-T. Li, Y. Liu, Sci. China Chem. 2018, 61, 979.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  E. Pazos, P. Novo, C. Peinador, A. E. Kaifer, M. D. Garc?a, Angew. Chem. Int. Ed. 2019, 58, 403.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  T. Skorjanc, F. Benyettou, J.-C. Olsen, A. Trabolsi, Chem. – Eur. J. 2017, 23, 8333.
         | Crossref | GoogleScholarGoogle Scholar | 28164384PubMed |

[22]  A. S. Braegelman, M. J. Webber, Theranostics 2019, 9, 3017.
         | Crossref | GoogleScholarGoogle Scholar | 31244940PubMed |

[23]  G. Yu, X. Chen, Theranostics 2019, 9, 3041.
         | Crossref | GoogleScholarGoogle Scholar | 31244941PubMed |

[24]  Z. Zheng, W.-C. Geng, Z. Xu, D.-S. Guo, Isr. J. Chem. 2019, 59, 913.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  X. Yang, H. Yu, L. Wang, R. Tong, M. Akram, Y. Chen, X. Zhai, Soft Matter 2015, 11, 1242.
         | Crossref | GoogleScholarGoogle Scholar | 25614350PubMed |

[26]  H. Wang, D.-W. Zhang, X. Zhao, Z.-T. Li, Acta Chimi. Sin. 2015, 73, 471.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. Liu, Y. Lan, Z. Yu, C. S. Y. Tan, R. M. Parker, C. Abell, O. A. Scherman, Acc. Chem. Res. 2017, 50, 208.
         | Crossref | GoogleScholarGoogle Scholar | 28075551PubMed |

[28]  J. Murray, K. Kim, T. Ogoshi, W. Yao, B. C. Gibb, Chem. Soc. Rev. 2017, 46, 2479.
         | Crossref | GoogleScholarGoogle Scholar | 28338130PubMed |

[29]  H. Zou, J. Liu, Y. Li, X. Li, X. Wang, Small 2018, 14, 1802234.
         | Crossref | GoogleScholarGoogle Scholar | 30168673PubMed |

[30]  T. Xiao, L. Xu, L. Zhou, X.-Q. Sun, C. Lin, L. Wang, J. Mater. Chem. B Mater. Biol. Med. 2019, 7, 1526.
         | Crossref | GoogleScholarGoogle Scholar | 32254900PubMed |

[31]  S. Sinn, F. Biedermann, Isr. J. Chem. 2018, 58, 357.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  H.-J. Buschmann, K. Jansen, E. Schollmeyer, Thermochim. Acta 1998, 317, 95.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  H.-J. Buschmann, L. Mutihac, K. Jansen, J. Incl. Phenom. Macrocycl. Chem. 2001, 39, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  Q. Li, S. C. Qiu, J. Zhang, K. Chen, Y. Huang, X. Xiao, Y. Zhang, F. Li, Y. Q. Zhang, S. F. Xue, Q. J. Zhu, Z. Tao, L. F. Lindoy, G. Wei, Org. Lett. 2016, 18, 4020.
         | Crossref | GoogleScholarGoogle Scholar | 27499014PubMed |

[35]  W. H. Huang, P. Y. Zavalij, L. Isaacs, Angew. Chem. Int. Ed. 2007, 46, 7425.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  L. A. Logsdon, C. L. Schardon, V. Ramalingam, S. K. Kwee, A. R. Urbach, J. Am. Chem. Soc. 2011, 133, 17087.
         | Crossref | GoogleScholarGoogle Scholar | 21967539PubMed |

[37]  J. W. Lee, H. H. L. Lee, Y. H. Ko, K. Kim, H. I. Kim, J. Phys. Chem. B 2015, 119, 4628.
         | Crossref | GoogleScholarGoogle Scholar | 25757499PubMed |

[38]  Z. Hirani, H. F. Taylor, E. F. Babcock, A. T. Bockus, C. D. Varnado, C. W. Bielawski, A. R. Urbach, J. Am. Chem. Soc. 2018, 140, 12263.
         | Crossref | GoogleScholarGoogle Scholar | 30221936PubMed |

[39]  D. M. Bailey, A. Hennig, V. D. Uzunova, W. M. Nau, Chem. – Eur. J. 2008, 14, 6069.
         | Crossref | GoogleScholarGoogle Scholar | 18509840PubMed |

[40]  G. Ghale, V. Ramalingam, A. R. Urbach, W. M. Nau, J. Am. Chem. Soc. 2011, 133, 7528.
         | Crossref | GoogleScholarGoogle Scholar | 21513303PubMed |

[41]  M. E. Bush, N. D. Bouley, A. R. Urbach, J. Am. Chem. Soc. 2005, 127, 14511.
         | Crossref | GoogleScholarGoogle Scholar | 16218648PubMed |

[42]  H. Li, H. N. Xie, Y. Cao, X. R. Ding, Y. M. Yin, G. X. Li, Anal. Chem. 2013, 85, 1047.
         | Crossref | GoogleScholarGoogle Scholar | 23237077PubMed |

[43]  M. J. Rowland, E. A. Appel, R. J. Coulston, O. A. Scherman, J. Mater. Chem. B Mater. Biol. Med. 2013, 1, 2904.
         | Crossref | GoogleScholarGoogle Scholar | 32260856PubMed |

[44]  A. Hennig, H. Bakirci, W. M. Nau, Nat. Methods 2007, 4, 629.
         | Crossref | GoogleScholarGoogle Scholar | 17603491PubMed |

[45]  H. Cong, L. L. Tao, Y. H. Yu, F. Yang, Y. Du, S. F. Xue, Z. Tao, Acta Chimi. Sin. 2006, 64, 989.

[46]  J. M. Yi, Y. Q. Zhang, H. Cong, S. F. Xue, Z. Tao, J. Mol. Struct. 2009, 933, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  J. Zhang, Y. Y. Xi, Q. Li, Q. Tang, R. b. Wang, Y. Huang, Z. Tao, S. F. Xue, L. F. Lindoy, G. Wei, Chem. Asian J. 2016, 11, 2250.
         | Crossref | GoogleScholarGoogle Scholar | 27349365PubMed |

[48]  Z. Z. Gao, J. L. Kan, L. X. Chen, D. Bai, H. Y. Wang, Z. Tao, X. Xiao, ACS Omega 2017, 2, 5633.
         | Crossref | GoogleScholarGoogle Scholar | 31457827PubMed |

[49]  P. H. Shan, S. C. Tu, R. L. Lin, Z. Tao, J. X. Liu, X. Xiao, CrystEngComm 2017, 19, 2168.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  Q. H. Bai, S. W. Zhang, H. R. Chen, T. Sun, C. Redshaw, J. X. Zhang, X. L. Ni, G. Wei, Z. Tao, ChemistrySelect 2017, 2, 2569.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  A. I. Day, A. P. Arnold, R. J. Blanch, ‘Method for synthesis of cucurbiturils’. PCT Int. Appl. (2000), 112 pp. WO 2000068232A1 20001116.

[52]  J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim, J. Am. Chem. Soc. 2000, 122, 540.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305.
         | Crossref | GoogleScholarGoogle Scholar | 21125111PubMed |