Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

An Ru-Substituted Tris(ethynyl)methyl Cation: Synthesis, Properties, and Structure of [{Cp(dppe)Ru(C≡C)}3C]PF6·C6H6*

Michael I. Bruce https://orcid.org/0000-0002-8377-7186 A C , Alexandre Burgun A , Brian K. Nicholson B and Natasha N. Zaitseva A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

B Department of Chemistry, University of Waikato, Hamilton 3216, New Zealand.

C Corresponding author. Email: michael.bruce@adelaide.edu.au

Australian Journal of Chemistry 73(6) 552-555 https://doi.org/10.1071/CH19655
Submitted: 18 December 2019  Accepted: 17 January 2020   Published: 5 March 2020

Abstract

The dark blue complex [{Cp(dppe)Ru(C≡C)}3C]PF6 1 (Cp = cyclopentadienyl, dppe = 1,2-bis(diphenylphosphino)ethane) was obtained in 46 % yield by treatment of Ru(C≡CH)(dppe)Cp with CuCl/TMEDA (tetramethylethanediamine), followed by KOH and [NH4]PF6 in acetone; it was accompanied by known complexes {Cp(dppe)Ru}C≡CC≡C{Ru(dppe)Cp} 2 (22 %) and yellow [1,3-{Cp(dppe)Ru}2C4H3]PF6 3 (2.6 %). The structure of the cationic fragment of 1 in its benzene solvate consists of a central planar C attached to three C≡CRu(dppe)Cp fragments. The cation of 3 consists of a cyclobuten-1,3-diyl group bearing two Ru(dppe)Cp groups. The 13C NMR resonance of the central C in 1 is found at δ 66.11. The cyclic voltammogram of 1 contains three irreversible oxidation waves at +0.87, +0.79, and +0.25 V, together with a reversible reduction wave at −1.38 V (versus FeCp2/[FeCp2]+).


References

[1]  H. H. Freedman, in Carbonium Ions (Eds G. A. Olah, P. v. R. Schleyer) 1971, Vol. 4, pp. 1501–1578 (Wiley: New York, NY).

[2]  (a) G. A. Olah, R. Krishnamurti, G. K. Surya Prakash, J. Org. Chem. 1990, 55, 6061.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. G. Richey, L. E. Rennick, A. S. Kushner, J. M. Richey, J. C. Philips, J. Am. Chem. Soc. 1965, 87, 4017.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. K. Tseng, K. G. Migliorese, S. I. Miller, Tetrahedron 1974, 30, 377.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) n = 1: G. A. Olah, R. J. Spear, P. W. Westerman, J.-M. Denis, J. Am. Chem. Soc. 1974, 96, 5855.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) n = 2, 3: K. Komatsu, T. Takai, S. Aonuma, K. Takeuchi, Tetrahedron Lett. 1988, 29, 5157.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  K. Kato, W. Kim, D. Kim, H. Yorimitsu, A. Osuka, Chem. – Eur. J. 2016, 22, 7041.
         | Crossref | GoogleScholarGoogle Scholar | 26991021PubMed |

[5]  (a) J. H. Richards, E. A. Hill, J. Am. Chem. Soc. 1959, 81, 3484.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) W. E. Watts, J. Organomet. Chem. Libr. 1979, 7, 399.
      (c) A. A. Koridze, Russ. Chem. Rev. 1986, 113, 277.
      (d) C. Bleiholder, F. Rominger, R. Gleiter, Organometallics 2009, 28, 1014.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. A. Kamyshova, A. Z. Kreindlin, M. I. Rybinskaya, P. V. Petrovskii, Russ. Chem. Bull. 1999, 48, 581.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  R. E. Davis, H. D. Simpson, N. Conte, R. Pettit, J. Am. Chem. Soc. 1971, 93, 6688.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  G. G. Melikyan, S. Bright, T. Monroe, K. L. Hardcastle, J. Ciurash, Angew. Chem. Int. Ed. 1998, 37, 161.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) D. Seyferth, C. S. Eschbach, M. O. Nestle, J. Organomet. Chem. 1975, 97, C11.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) D. Seyferth, Adv. Organomet. Chem. 1976, 14, 97.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. V. Muratov, A. S. Romanov, M. Corsini, A. R. Kudinov, F. Fabrizi de Biani, W. Siebert, Chem. – Eur. J. 2017, 23, 11935.
         | Crossref | GoogleScholarGoogle Scholar | 28671742PubMed |

[10]  M. I. Bruce, P. J. Low, Adv. Organomet. Chem. 2004, 50, 179.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. I. Bruce, M. G. Humphrey, Aust. J. Chem. 1989, 42, 1067.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. I. Bruce, A. Burgun, M. A. Fox, M. Jevric, P. J. Low, B. K. Nicholson, C. R. Parker, B. W. Skelton, A. H. White, N. N. Zaitseva, Organometallics 2013, 32, 3286.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. I. Bruce, B. G. Ellis, M. Jevric, C. Lapinte, G. Melino, F. Paul, B. W. Skelton, M. E. Smith, L. Toupet, A. H. White, Dalton Trans. 2004, 1601.
         | Crossref | GoogleScholarGoogle Scholar | 15252610PubMed |

[14]  J. H. Bowie, M. I. Bruce, M. A. Buntine, A. S. Gentleman, D. C. Graham, P. J. Low, G. F. Metha, C. Mitchell, C. R. Parker, B. W. Skelton, A. H. White, Organometallics 2012, 31, 5262.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. I. Bruce, M. G. Humphrey, M. R. Snow, E. R. T. Tiekink, J. Organomet. Chem. 1986, 314, 213.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) M. I. Bruce, G. A. Koutsantonis, Aust. J. Chem. 1991, 44, 207.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. I. Bruce, B. G. Ellis, P. J. Low, B. W. Skelton, A. H. White, Organometallics 2003, 22, 3184.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
         | Crossref | GoogleScholarGoogle Scholar |