Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Mapping Out the Diversity of Lanthanide(iii) Coordination Complexes Involving p-Sulfonatocalix[4,6]arenes

Irene Ling https://orcid.org/0000-0002-5485-543X A F , Mohamed Makha B , Alexandre N. Sobolev C , Yatimah Alias D and Colin L. Raston https://orcid.org/0000-0001-6704-5105 E F
+ Author Affiliations
- Author Affiliations

A School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.

B Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.

C School of Molecular Sciences, M310, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.

D Chemistry Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

E Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia.

F Corresponding authors. Email: ireneling@monash.edu; colin.raston@flinders.edu.au

Australian Journal of Chemistry 73(6) 570-578 https://doi.org/10.1071/CH19640
Submitted: 11 December 2019  Accepted: 4 February 2020   Published: 19 March 2020

Abstract

Structurally authenticated complexes of the cone-shaped p-sulfonatocalix[4]arene and conformationally flexible p-sulfonatocalix[6]arene devoid of co-ligands/ancillary molecules are limited. Early and late members of the lanthanide series as their trivalent ions, La3+, Er3+, and Yb3+, form complexes from aqueous media under these conditions. For La3+ and Er3+, distinct hydrophobic and hydrophilic bilayers are formed with p-sulfonatocalix[4]arene, whereas for Yb3+, two complexes form that deviate from the well-known bilayer arrangement of calixarenes. Replacing the calixarene with p-sulfonatocalix[6]arene results in a hydrogen-bonded network with alternating hydrophobic–hydrophilic layers associated with primary coordination of Yb3+, with the larger macrocyclic calixarene in a partial cone conformation.


References

[1]  S. A. Cotton, Lanthanide and Actinide Chemistry 2006 (John Wiley & Sons Ltd: Hoboken, NJ).

[2]  Chemistry of the Elements, 2nd edn (Eds N. N. Greenwood, A. Earnshaw) 1997, Ch. 30, pp. 1227–1249 (Elsevier: Amsterdam).

[3]  H. C. Aspinall, Chemistry of the f-Block Elements 2001 (CRC Press: Boca Raton, FL).

[4]  F. M. Sroor, F. T. Edelmann, in Encyclopedia of Inorganic and Bioinorganic Chemistry 2012 (John Wiley & Sons, Ltd: Hoboken, NJ).

[5]  F. Nief, Dalton Trans. 2010, 6589.
         | Crossref | GoogleScholarGoogle Scholar | 20631944PubMed |

[6]  J. Zhang, N. H. Dolg, Inorg. Chem. 2014, 53, 7700.
         | Crossref | GoogleScholarGoogle Scholar | 24960079PubMed |

[7]  J. G. Bünzli, J. Coord. Chem. 2014, 67, 3706.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. A. Cotton, in Encyclopedia of Inorganic Chemistry 2006 (John Wiley & Sons, Ltd: Hoboken, NJ).

[9]  Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials (Ed. Z. Zheng) 2017 (Springer: Berlin).

[10]  G. K. H. Shimizu, R. Vaidhyanathan, J. M. Taylor, Chem. Soc. Rev. 2009, 38, 1430.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  H. H. Wang, L. J. Zhou, Y. L. Wang, Q. Y. Liu, Inorg. Chem. Commun. 2016, 73, 94.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  B. D. Chandler, D. T. Cramb, G. K. H. Shimizu, J. Am. Chem. Soc. 2006, 128, 10403.
         | Crossref | GoogleScholarGoogle Scholar | 16895405PubMed |

[13]  B. D. Chandler, J. O. Yu, D. T. Cramb, G. K. H. Shimizu, Chem. Mater. 2007, 19, 4467.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  F. Gándara, A. Garcıá-Cortés, C. Cascales, B. Gómez-Lor, E. Gutiérrez-Puebla, M. Iglesias, A. Monge, N. Snejko, Inorg. Chem. 2007, 46, 3475.
         | Crossref | GoogleScholarGoogle Scholar | 17407282PubMed |

[15]  Calixarenes 2001 (Eds M.-Z. Asfari, J. Volker Böhmer, J. M. Harrowfield, J. Vicens) 2001 (Springer: Berlin).

[16]  P. Neri, J. L. Sessler, M.-X. Wang, Calixarenes and Beyond 2016 (Springer: Berlin).

[17]  D.-S. Guo, K. Wang, Y. Liu, J. Incl. Phenom. Macrocycl. Chem. 2008, 62, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  N. Basilio, V. Francisco, L. Garcia-Rio, Int. J. Mol. Sci. 2013, 14, 3140.
         | Crossref | GoogleScholarGoogle Scholar | 23380960PubMed |

[19]  F. Perret, S. Guéret, O. Danylyuk, K. Suwinska, A. W. Coleman, J. Mol. Struct. 2006, 797, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A. Drljaca, M. J. Hardie, C. L. Raston, J. Chem. Soc., Dalton Trans. 1999, 3639.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  I. Ling, C. L. Raston, Coord. Chem. Rev. 2018, 375, 80.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  J. L. Atwood, L. J. Barbour, S. J. Dalgarno, C. L. Raston, H. R. Webb, J. Chem. Soc., Dalton Trans. 2002, 4351.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  I. Ling, C. L. Raston, in Comprehensive Supramolecular Chemistry II (Ed. J. L. Atwood) 2017, pp. 19–73 (Elsevier: Amsterdam).

[24]  I. Ling, Y. Alias, C. L. Raston, New J. Chem. 2010, 34, 1802.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. J. Dalgarno, M. J. Hardie, J. E. Warren, C. L. Raston, Dalton Trans. 2004, 2413.
         | Crossref | GoogleScholarGoogle Scholar | 15303152PubMed |

[26]  S. J. Dalgarno, M. J. Hardie, M. Makha, C. L. Raston, Chem. – Eur. J. 2003, 9, 2834.
         | Crossref | GoogleScholarGoogle Scholar | 12866556PubMed |

[27]  S. J. Dalgarno, M. J. Hardie, J. L. Atwood, J. E. Warren, C. L. Raston, New J. Chem. 2005, 29, 649.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  C. D. Gutsche, L. J. Bauer, J. Am. Chem. Soc. 1985, 107, 6052.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  C. D. Gutsche, Calixarenes: An Introduction 2008 (Royal Society of Chemistry: London).

[30]  F. Perret, A. Lazar, A. W. Coleman, Chem. Commun. 2006, 2425.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  Y. Israeli, G. P. A. Yap, C. Detellier, Supramol. Chem. 2001, 12, 457.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  J. Cui, V. D. Uzunova, D.-S. Guo, K. Wang, W. M. Nau, Y. Liu, Eur. J. Org. Chem. 2010, 1704.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  S. J. Dalgarno, M. J. Hardie, J. L. Atwood, C. L. Raston, Inorg. Chem. 2004, 43, 6351.
         | Crossref | GoogleScholarGoogle Scholar | 15446883PubMed |

[34]  S. Shinkai, S. Mori, T. Tsubaki, T. Sone, O. Manabe, Tetrahedron Lett. 1984, 25, 5315.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  Y. Tauran, A. Brioude, P. Shahgaldian, A. Cumbo, B. Kim, F. Perret, A. W. Coleman, I. Montasser, Chem. Commun. 2012, 9483.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.

[37]  P. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr. 2013, B69, 249.