Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Properties of Maleic Acid Cholesteryl Monoester–Citric Acid Triester

Cailing Xie A , Lisi Ba A , Yuru Wei A , Zeyi Shi A and Li’e Jin https://orcid.org/0000-0002-0242-8807 A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

B Corresponding author. Email: lejin2003@163.com

Australian Journal of Chemistry 73(7) 635-639 https://doi.org/10.1071/CH19539
Submitted: 21 October 2019  Accepted: 6 January 2020   Published: 21 February 2020

Abstract

A new maleic acid cholesteryl monoester–citric acid trimester (MACM-CAT) containing three cholesterol units has been synthesised successfully. The structure was characterised by a series of spectroscopic methods and thermal analysis including polarising optical microscopy. The results showed that MACM-CAT displayed a triangular-like ordered layered structure and exhibited a good liquid crystalline behaviour. The introduction of sodium citrate onto cholesterol units is favourable for the formation of hydrogen bonds of MACM-CAT and improvement of the stability. More importantly, the study provides a novel route for the synthesis of liquid crystalline materials.


References

[1]  G. Y. Yeap, F. Osman, N. Maeta, M. M. Ito, C. M. Lin, H. C. Lin, J. Mol. Liq. 2017, 236, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. Jiang, J. Qiu, L. Lin, H. Guo, F. Yang, Dyes Pigments 2019, 163, 363.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  C. Wu, Mol. Cryst. Liq. Cryst. 2015, 609, 31.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  H. G. Lee, S. Munir, S. Y. Park, ACS Appl. Mater. Interfaces 2016, 8, 26407.
         | Crossref | GoogleScholarGoogle Scholar | 27618511PubMed |

[5]  Y. Kim, M. Wada, N. Tamaoki, J. Mater. Chem. C Mater. Opt. Electron. Devices 2014, 2, 1921.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. Marcelis, A. Koudijs, E. Sudhölter, Mol. Cryst. Liq. Cryst. 2004, 411, 193.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  V. A. Mallia, N. Tamaoki, Chem. Soc. Rev. 2004, 33, 76.
         | Crossref | GoogleScholarGoogle Scholar | 14767503PubMed |

[8]  S. Shinkai, K. Murata, J. Mater. Chem. 1998, 8, 485.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Y. Fan, C. Chen, Y. Huang, F. Zhang, G. Lin, Colloids Surf. B Biointerfaces 2017, 151, 19.
         | Crossref | GoogleScholarGoogle Scholar | 27940165PubMed |

[10]  A. R. Ranchchh, U. C. Bhoya, Mol. Cryst. Liq. Cryst. 2018, 665, 43.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  X. Zong, C. Wu, Mol. Cryst. Liq. Cryst. 2018, 666, 40.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. Gupta, S. K. Pal, Liq. Cryst. 2015, 42, 1250.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  E. Doganci, C. Cakirlar, S. Bayir, F. Yilmaz, M. Yasin, J. Appl. Polym. Sci. 2017, 134, 45207.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. Sasaki, Y. Takanishi, J. Yamamoto, A. Yoshizawa, Soft Matter 2016, 12, 3331.
         | Crossref | GoogleScholarGoogle Scholar | 26947890PubMed |

[15]  M. Gupta, S. P. Gupta, S. S. Mohapatra, S. Dhara, S. K. Pal, Chem. – Eur. J. 2017, 23, 10626.
         | Crossref | GoogleScholarGoogle Scholar | 28509394PubMed |

[16]  J. Tan, X. Jin, M. Chen, Sci. Rep. 2019, 9, 466.
         | Crossref | GoogleScholarGoogle Scholar | 30679530PubMed |

[17]  D. Pang, H. Wang, M. Li, Tetrahedron 2005, 61, 6108.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  F. Yang, J. Yuan, C. Li, H. Guo, X. Yan, Liq. Cryst. 2014, 41, 137.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  N. M. Selivanova, A. T. Gubaidullin, W. Haase, Y. G. Galyametdionv, J. Mol. Liq. 2019, 275, 402.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  U. Beginn, Prog. Polym. Sci. 2003, 28, 1049.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  J. H. Lee, I. Jang, S. H. Hwang, S. J. Lee, S. H. Yoo, J. Y. Jho, Liq. Cryst. 2012, 39, 973.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. Liu, C. Hong, Y. Yao, H. Shen, G. Ji, G. Li, Y. Xie, Eur. J. Pharm. Biopharm. 2016, 107, 151.
         | Crossref | GoogleScholarGoogle Scholar | 27395394PubMed |

[23]  L. J. Prins, D. N. Reinhoudt, P. Timmerman, Angew. Chem. Int. Ed. 2001, 40, 2382.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  M. Zhu, Y. Zhuo, H. Guo, F. Yang, J. Qiu, J. Lumin. 2018, 194, 264.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  M. Zhu, H. Guo, F. Yang, Z. Wang, RSC Adv. 2017, 7, 4320.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  Y. Xiong, S. Zheng, L. Zhu, H. Guo, F. Yang, J. Mol. Struct. 2018, 1164, 311.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  Z. Guo, Q. Li, X. Liu, J. Hu, L. Yang, Liq. Cryst. 2015, 43, 1.

[28]  V. Desai, V. S. Sharma, R. B. Patel, Mol. Cryst. Liq. Cryst. 2018, 668, 29.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  H. Guo, X. Fang, F. Yang, Y. Wu, Tetrahedron Lett. 2015, 56, 5465.
         | Crossref | GoogleScholarGoogle Scholar |