Phenol as a Modulator in the Chemical Reactivity of 2,4,6-Trichloro-1,3,5-triazine: Rules of the Game II*
Rotimi Sheyi A , Anamika Sharma A B , Ayman El-Faham C D , Beatriz G. de la Torre B and Fernando Albericio A C E FA Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa.
B KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
C Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
D Department of Chemistry, Faculty of Science, Alexandria University, PO Box 426, Alexandria 21321, Egypt.
E CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain.
F Corresponding author. Email: albericio@ukzn.ac.za
Australian Journal of Chemistry 73(4) 352-356 https://doi.org/10.1071/CH19524
Submitted: 17 October 2019 Accepted: 18 December 2019 Published: 5 February 2020
Abstract
2,4,6-Trichloro-1,3,5-triazine (TCT) is a privileged core that has the capacity to undergo sequential nucleophilic substitution reactions. Three nucleophiles, namely phenol, thiol and amine, were studied and the preferential order of incorporation on TCT was found to be first phenol, second thiol and third amine. The introduction of phenol was achieved at −20°C. The incorporation of this nucleophile in TCT helped to replace the third ‘Cl’ at 35°C, which is compatible with a biological context. The atomic charges on ‘Cl’ calculated by theoretical approaches were consistent with the experimental findings.
References
[1] J. Li, S. Wang, L. Liao, Q. Ma, Z. Zhang, G. Fan, New J. Chem. 2019, 43, 10675.| Crossref | GoogleScholarGoogle Scholar |
[2] T. J. Mooibroek, P. Gamez, Inorg. Chim. Acta 2007, 360, 381.
| Crossref | GoogleScholarGoogle Scholar |
[3] Y. Huang, Y. Zhang, J. M. Shreeve, Chem. – Eur. J. 2011, 17, 1538.
| Crossref | GoogleScholarGoogle Scholar | 21268156PubMed |
[4] G. Blotny, Tetrahedron 2006, 62, 9507.
| Crossref | GoogleScholarGoogle Scholar |
[5] H. Zhao, Y. Liu, Z. Cui, D. Beattie, Y. Gu, Q. Wang, J. Agric. Food Chem. 2011, 59, 11711.
| Crossref | GoogleScholarGoogle Scholar | 21970768PubMed |
[6] E. Hollink, E. E. Simanek, Org. Lett. 2006, 8, 2293.
| Crossref | GoogleScholarGoogle Scholar | 16706509PubMed |
[7] X. Wang, C. A. Figg, X. Lv, Y. Yang, B. S. Sumerlin, Z. An, ACS Macro Lett. 2017, 6, 337.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. El-Faham, S. M. Soliman, H. A. Ghabbour, Y. A. Elnakady, T. A. Mohaya, M. R. Siddiqui, F. Albericio, J. Mol. Struct. 2016, 1125, 121.
| Crossref | GoogleScholarGoogle Scholar |
[9] A. Sharma, H. Ghabbour, S. T. Khan, G. Beatriz, F. Albericio, A. El-Faham, J. Mol. Struct. 2017, 1145, 244.
| Crossref | GoogleScholarGoogle Scholar |
[10] E. E. Simanek, H. Abdou, S. Lalwani, J. Lim, M. Mintzer, V. J. Venditto, B. Vittur, Proc. Royal Soc. A 2010, 466, 1445.
| Crossref | GoogleScholarGoogle Scholar |
[11] P. Singla, V. Luxami, K. Paul, Eur. J. Med. Chem. 2015, 102, 39.
| Crossref | GoogleScholarGoogle Scholar | 26241876PubMed |
[12] G. Barany, R. Merrifield, J. Am. Chem. Soc. 1977, 99, 7363.
| Crossref | GoogleScholarGoogle Scholar | 915158PubMed |
[13] B. M. Trost, Science 1983, 219, 245.
| Crossref | GoogleScholarGoogle Scholar | 17798254PubMed |
[14] G. Barany, F. Albericio, J. Am. Chem. Soc. 1985, 107, 4936.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. Sharma, A. El-Faham, B. G. de la Torre, F. Albericio, Front Chem. 2018, 6, 516.
| Crossref | GoogleScholarGoogle Scholar | 30443543PubMed |
[16] C. L. Liotta, R. L. Karelitz, J. Org. Chem. 1967, 32, 3090.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. Sharma, R. Sheyi, A. Kumar, A. El-Faham, B. G. de la Torre, F. Albericio, Org. Lett. 2019, 21, 7888.
| Crossref | GoogleScholarGoogle Scholar | 31532213PubMed |
[18] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09, Revision A02 2009 (Gaussian Inc.: Wallingford, CT).
[19] E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 3.1 1995 (University of Wisconsin: Madison, WI).
[20] R. Dennington, T. Keith, J. Millam, GaussView, version 5 2009 (Semichem Inc.: Shawnee Mission, KS).