Preparation of Protein–Polymer Conjugates: Copolymerisation by RAFT
Fei Huang A , Judith A. Scoble B , John Chiefari A and Charlotte C. Williams B CA CSIRO Manufacturing, Bag 10, Bayview Avenue, Clayton, Vic. 3168, Australia.
B CSIRO Manufacturing, 343 Royal Parade, Parkville, Vic. 3052, Australia.
C Corresponding author. Email: Charlotte.Williams@csiro.au
Australian Journal of Chemistry 73(10) 1027-1033 https://doi.org/10.1071/CH19514
Submitted: 13 October 2019 Accepted: 28 February 2020 Published: 2 June 2020
Journal Compilation © CSIRO 2020 Open Access CC BY-NC-ND
Abstract
A method for the preparation of protein–polymer conjugates is presented that represents a different approach to current conjugation techniques. A protein–polymer conjugate was prepared by reversible addition–fragmentation chain-transfer (RAFT) copolymerisation, where one of the species of monomer used contains a protein. The enzyme horseradish peroxidase (HRP) was functionalised with an acrylate group via a polyethylene glycol (PEG) linker to the protein surface lysine residues. The PEG linker promoted aqueous solubility of the acrylate group, which led to an improved yield of HRP functionalisation. RAFT copolymerisation with N-acryloylmorpholine (NAM) resulted in synthesis of an HRP-RAFT copolymer, with full retention of the enzyme’s activity.
References
[1] S. A. Bhawani, A. Husaini, F. B. Ahmad, M. R. Asaruddin, Curr. Protein Pept. Sci. 2018, 19, 972.| Crossref | GoogleScholarGoogle Scholar | 28828988PubMed |
[2] I. Ekladious, Y. L. Colson, M. W. Grinstaff, Nat. Rev. Drug Discov. 2019, 18, 273.
| Crossref | GoogleScholarGoogle Scholar | 30542076PubMed |
[3] M. J. Vicent, H. Ringsdorf, R. Duncan, Adv. Drug Deliv. Rev. 2009, 61, 1117.
| Crossref | GoogleScholarGoogle Scholar | 19682516PubMed |
[4] R. Duncan, M. J. Vicent, F. Greco, R. I. Nicholson, Endocr. Relat. Cancer 2005, 12, S189.
| Crossref | GoogleScholarGoogle Scholar | 16113096PubMed |
[5] J. H. Ko, H. D. Maynard, Chem. Soc. Rev. 2018, 47, 8998.
| Crossref | GoogleScholarGoogle Scholar | 30443654PubMed |
[6] E. M. Pelegri-O’Day, E. W. Lin, H. D. Maynard, J. Am. Chem. Soc. 2014, 136, 14323.
| Crossref | GoogleScholarGoogle Scholar | 25216406PubMed |
[7] J. Y. Shu, B. Panganiban, T. Xu, Annu. Rev. Phys. Chem. 2013, 64, 631.
| Crossref | GoogleScholarGoogle Scholar | 23331303PubMed |
[8] W. Zhao, F. Liu, Y. Chen, J. Bai, W. Gao, Polymer 2015, 66, A1.
| Crossref | GoogleScholarGoogle Scholar |
[9] K. Knop, R. Hoogenboom, D. Fischer, U. S. Schubert, Angew. Chem. Int. Ed. 2010, 49, 6288.
| Crossref | GoogleScholarGoogle Scholar |
[10] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.
| Crossref | GoogleScholarGoogle Scholar |
[11] E. Bays, L. Tao, C. W. Chang, H. D. Maynard, Biomacromolecules 2009, 10, 1777.
| 19505142PubMed |
[12] X. Huang, M. Li, D. C. Green, D. S. Williams, A. J. Patil, S. Mann, Nat. Commun. 2013, 4, 2239.
| Crossref | GoogleScholarGoogle Scholar | 23896993PubMed |
[13] I. Ozer, A. Chilkoti, Bioconjug. Chem. 2017, 28, 713.
| Crossref | GoogleScholarGoogle Scholar | 27998056PubMed |
[14] Y. Pang, J. Liu, Y. Qi, X. Li, A. Chilkoti, Angew. Chem. Int. Ed. 2016, 55, 10296.
| Crossref | GoogleScholarGoogle Scholar |
[15] Y. Xia, S. Tang, B. D. Olsen, Chem. Commun. 2013, 49, 2566.
| Crossref | GoogleScholarGoogle Scholar |
[16] J. S. Kim, A. R. Sirois, A. J. Vazquez Cegla, E. Jumai’an, N. Murata, M. E. Buck, S. J. Moore, Bioconjug. Chem. 2019, 30, 1220.
| Crossref | GoogleScholarGoogle Scholar | 30920802PubMed |
[17] T. A. Wright, R. C. Page, D. Konkolewicz, Polym. Chem. 2019, 10, 434.
| Crossref | GoogleScholarGoogle Scholar | 31249635PubMed |
[18] P. Wilson, A. Anastasaki, M. R. Owen, K. Kempe, D. M. Haddleton, S. K. Mann, A. P. Johnston, J. F. Quinn, M. R. Whittaker, P. J. Hogg, T. P. Davis, J. Am. Chem. Soc. 2015, 137, 4215.
| Crossref | GoogleScholarGoogle Scholar | 25794267PubMed |
[19] A. S. M. Wong, E. Czuba, M. Z. Chen, D. Yuen, K. I. Cupic, S. Yang, R. Y. Hodgetts, L. I. Selby, A. P. R. Johnston, G. K. Such, ACS Macro Lett. 2017, 6, 315.
| Crossref | GoogleScholarGoogle Scholar |
[20] G. N. Grover, H. D. Maynard, Curr. Opin. Chem. Biol. 2010, 14, 818.
| Crossref | GoogleScholarGoogle Scholar | 21071260PubMed |
[21] Y. Wang, C. Wu, Biomacromolecules 2018, 19, 1804.
| 29722971PubMed |
[22] M. P. Madej, G. Coia, C. C. Williams, J. M. Caine, L. A. Pearce, R. Attwood, N. A. Bartone, O. Dolezal, R. M. Nisbet, S. D. Nuttall, T. E. Adams, Biotechnol. Bioeng. 2012, 109, 1461.
| Crossref | GoogleScholarGoogle Scholar | 22170409PubMed |
[23] B. Sumerlin, ACS Macro Lett. 2012, 1, 141.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. A. Gauthier, H. A. Klok, Chem. Commun. 2008, 23, 2591.
| Crossref | GoogleScholarGoogle Scholar |
[25] C. Boyer, V. Bulmus, J. Liu, T. P. Davis, M. H. Stenzel, C. Barner-Kowollik, J. Am. Chem. Soc. 2007, 129, 7145.
| Crossref | GoogleScholarGoogle Scholar | 17500523PubMed |
[26] J. Nicolas, V. San Miguel, G. Mantovani, D. M. Haddleton, Chem. Commun. 2006, 45, 4697.
| Crossref | GoogleScholarGoogle Scholar |
[27] N. Vanparijs, R. De Coen, D. Laplace, B. Louage, S. Maji, L. Lybaert, R. Hoogenboom, B. G. De Geest, Chem. Commun. 2015, 51, 13972.
| Crossref | GoogleScholarGoogle Scholar |
[28] K. L. Heredia, D. Bontempo, T. Ly, J. T. Byers, S. Halstenberg, H. D. Maynard, J. Am. Chem. Soc. 2005, 127, 16955.
| Crossref | GoogleScholarGoogle Scholar | 16316241PubMed |
[29] T. Nakata, N. Suzuki, J. Histochem. Cytochem. 2012, 60, 611.
| Crossref | GoogleScholarGoogle Scholar | 22610462PubMed |
[30] S. Perrier, Macromolecules 2017, 50, 7433.
| Crossref | GoogleScholarGoogle Scholar |
[31] D. Das, S. Srinivasan, A. M. Kelly, D. Y. Chiu, B. K. Daugherty, D. M. Ratner, P. S. Stayton, A. Convertine, Polym. Chem. 2016, 7, 826.
| Crossref | GoogleScholarGoogle Scholar |
[32] P. De, M. Li, S. R. Gondi, B. S. Sumerlin, J. Am. Chem. Soc. 2008, 130, 11288.
| Crossref | GoogleScholarGoogle Scholar | 18665597PubMed |
[33] M. Li, H. Li, P. De, B. S. Sumerlin, Macromol. Rapid Commun. 2011, 32, 354.
| Crossref | GoogleScholarGoogle Scholar | 21433183PubMed |
[34] O. Ryan, M. R. Smyth, C. O. Fagain, Enzyme Microb. Technol. 1994, 16, 501.
| Crossref | GoogleScholarGoogle Scholar | 7764889PubMed |
[35] C. C. Williams, S. H. Thang, T. Hantke, U. Vogel, P. H. Seeberger, J. Tsanaktsidis, B. Lepenies, ChemMedChem 2012, 7, 281.
| Crossref | GoogleScholarGoogle Scholar | 22144261PubMed |
[36] R. T. Dean, J. V. Hunt, A. J. Grant, Y. Yamamoto, E. Niki, Free Radic. Biol. Med. 1991, 11, 161.
| Crossref | GoogleScholarGoogle Scholar | 1937134PubMed |
[37] A. Frey, B. Meckelein, D. Externest, M. A. Schmidt, J. Immunol. Methods 2000, 233, 47.
| Crossref | GoogleScholarGoogle Scholar | 10648855PubMed |
[38] O. Koniev, A. Wagner, Chem. Soc. Rev. 2015, 44, 5495.
| Crossref | GoogleScholarGoogle Scholar | 26000775PubMed |
[39] See EC 1.11.1.7, pp. 1–6, in: Enzyme Handbook 7 (Eds D. Schomberg, M. Salzmann, D. Stephan) 1993 (Springer: Berlin).
[40] M. M. Kurfurst, Anal. Biochem. 1992, 200, 244.
| Crossref | GoogleScholarGoogle Scholar | 1378701PubMed |