X-Ray Structural Studies of Small-Bite Ligands on Large Cations – Lanthanide(iii) Ions and Dimethylphosphate
Eric J. Chan A , Jack M. Harrowfield A B D , Brian W. Skelton A and Allan H. White A CA School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Highway, Perth, WA 6009, Australia.
B Current address: Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8, allée Gaspard Monge, 67083 Strasbourg, France.
C Deceased.
D Corresponding author. Email: harrowfield@unistra.fr
Australian Journal of Chemistry 73(6) 539-546 https://doi.org/10.1071/CH19506
Submitted: 8 October 2019 Accepted: 25 November 2019 Published: 24 December 2019
Abstract
Reactions of lanthanide chlorides or trifluoracetates (tfa) or picrates with trimethylphosphate alone in the first two cases or trimethylphosphate plus 1,10-phenanthroline or 2,2′;6′,2′′-terpyridine in the third, result in the formation of crystalline products containing dimethylphosphate (dmp–). Single crystal X-ray structural characterisation of these materials has shown that the stoichiometrically simple Ln(dmp)3 species obtained with chloride reactants and the lighter lanthanides are polymeric and commonly dimorphic, while the stoichiometrically more variable mixed dmp/tfa complexes have structures closely related to one phase of the Ln(dmp)3 family, and the presence of picrate and aza-aromatic ligands enables the isolation of Y and Lu derivatives containing binuclear species. In all, the dmp– ligands adopt exclusively the κ1O;κ1O′ bridging mode, the overall results indicating that this should apply to the complete lanthanide series.
References
[1] S. A. Cotton, J. M. Harrowfield, in The Rare Earth Elements: Fundamentals and Applications (Ed. D. A. Atwood) 2012, pp. 73–81 (John Wiley & Sons, Ltd: Chichester, UK).[2] T. Loiseau, I. Mihalcea, N. Henry, C. Volkringer, Coord. Chem. Rev. 2014, 266–267, 69.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) R. D. Hancock, A. E. Martell, Chem. Rev. 1989, 89, 1875.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. D. Hancock, J. Chem. Educ. 1992, 69, 615.
| Crossref | GoogleScholarGoogle Scholar |
[4] J. M. Harrowfield, in Metal Ions in Biological Systems (Eds H. Sigel, A. Sigel) 2003, Vol. 40, Ch. 4, pp. 105–159, provides a summary of relevant literature (Marcel Dekker: New York, NY).
[5] P. Thuéry, Y. Atoini, J. M. Harrowfield, Dalton Trans. 2019, 48, 8756.
| Crossref | GoogleScholarGoogle Scholar | 31120075PubMed |
[6] J. G. Bergman, F. A. Cotton, J. Am. Chem. Soc. 1964, 86, 2941.
| Crossref | GoogleScholarGoogle Scholar |
[7] G. Zeng, X. Guo, C. Wang, Y. Lin, H. Li, Jiegou Huaxue 1994, 3, 24.
[8] L. Li, Y. Lin, G. Zeng, A. Ma, Jiegou Huaxue 1991, 10, 155.
[9] C. Liu, G. Wu, Z. Tang, Y. Han, N. Shi, L. Liao, Wuli Huaxue Xuebao 1990, 48, 116.
[10] A. Ma, L. Li, Y. Lin, G. Zeng, Zhongguo Xitu Xuebao 1990, 8, 201.
[11] A. Ma, L. Li, Y. Lin, G. Zeng, S. Jin, H. Li, Yingyong Huaxue 1989, 6, 99.
[12] L. Li, Y. Lin, G. Zeng, A. Ma, Yingyong Huaxue 1989, 6, 53.
[13] (a) M. Rafizadeh, V. Amani, N. S. Mortazavi, Bull. Korean Chem. Soc. 2009, 30, 489.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Rafizadeh, V. Amani, M. Broushaky, Anal. Sci. 2006, 22, 213. (These involve cases of mixed dimethylphosphate-nitrate complexes.)
[14] C. Huang, T. Yi, Y. Lu, G. Xu, H. Ling, G. Ma, Chin. Chem. Lett. 1992, 3, 947.
[15] Y. Han, Z. Pan, N. Shi, N. Liao, C. Liu, G. Wu, Z. Tang, Y. Xiao, Wuji Huaxue Xuebao 1990, 6, 17.
[16] V. G. Lebedev, K. K. Palkina, S. I. Maksimova, E. N. Lebedeva, O. V. Galaktionova, Zh. Neorg. Khim. 1982, 27, 2980.
[17] S. K. Gupta, G. A. Bhat, R. Murugavel, Inorg. Chem. 2017, 56, 9071.
| Crossref | GoogleScholarGoogle Scholar | 28741937PubMed |
[18] (a) P. Hendry, A. M. Sargeson, Prog. Inorg. Chem. 1990, 38, 201.
(b) J. Chin, Acc. Chem. Res. 1991, 24, 145.
| Crossref | GoogleScholarGoogle Scholar |
[19] W. W. Butcher, F. H. Westheimer, J. Am. Chem. Soc. 1955, 77, 2420.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) J. Sumaoka, Y. Yamamoto, Y. Kitamura, M. Komiyama, Curr. Org. Chem. 2007, 11, 463.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Komiyama, T. Takarada, in Metal Ions in Biological Systems (Eds H. Sigel, A. Sigel) 2003, Vol. 40, Ch. 10, pp. 355–368 (Marcel Dekker: New York, NY).
[21] L. Daumann, Angew. Chem. Int. Ed. 2019, 58, 12795.
| Crossref | GoogleScholarGoogle Scholar |
[22] E. J. Chan, J. M. Harrowfield, B. W. Skelton, A. N. Sobolev, A. H. White, Aust. J. Chem. 2019,
| Crossref | GoogleScholarGoogle Scholar |
[23] C. J. Kepert, B. W. Skelton, A. H. White, Aust. J. Chem. 1994, 47, 385.
| Crossref | GoogleScholarGoogle Scholar |
[24] C. J. Kepert, W.-M. Lu, P. C. Junk, B. W. Skelton, A. H. White, Aust. J. Chem. 1999, 52, 459.
| Crossref | GoogleScholarGoogle Scholar |
[25] G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.
[26] J. F. K. Muller, K. J. Kulicke, M. Neuburger, M. Spichty, Angew. Chem. Int. Ed. 2001, 40, 2890.
| Crossref | GoogleScholarGoogle Scholar |
[27] D. Wahnon, A. M. Lebuis, J. Chin, Angew. Chem. Int. Ed. Engl. 1995, 34, 2412.
| Crossref | GoogleScholarGoogle Scholar |
[28] W. T. A. Harrison, T. M. Nenoff, T. E. Gier, G. D. Stucky, J. Mater. Chem. 1994, 4, 1111.
| Crossref | GoogleScholarGoogle Scholar |
[29] E. Stulz, H.-B. Bürgi, C. Leumann, Chem. – Eur. J. 2000, 6, 523.
| Crossref | GoogleScholarGoogle Scholar | 10747420PubMed |
[30] M. Brauninger, W. Schwarz, A. Schmidt, Z. Naturforsch. B: Chem. Sci. 1979, 34, 1703.
| Crossref | GoogleScholarGoogle Scholar |
[31] M. Rafizadeh, V. Amani, M Broushaky, Anal. Sci. 2006, 22, x213.
| Crossref | GoogleScholarGoogle Scholar |
[32] J. Chin, S. Chung, D. H. Kim, J. Am. Chem. Soc. 2002, 124, 10948.
| Crossref | GoogleScholarGoogle Scholar | 12224920PubMed |
[33] M. J. Young, D. Wahnon, R. C. Hynes, J. Chin, J. Am. Chem. Soc. 1995, 117, 9441.
| Crossref | GoogleScholarGoogle Scholar |
[34] S. Belanger, A. E. Beauchamp, Inorg. Chem. 1997, 36, 3640.
| Crossref | GoogleScholarGoogle Scholar | 11670055PubMed |