Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Nicotinamide-Appended Fluorophores as Fluorescent Redox Sensors

Kathryn G. Leslie A , Jacek L. Kolanowski A , Natalie Trinh A , Serena Carrara B , Matthew D. Anscomb A , Kylie Yang A , Conor F. Hogan B , Katrina A. Jolliffe A C and Elizabeth J. New A C
+ Author Affiliations
- Author Affiliations

A University of Sydney, School of Chemistry, Sydney, NSW 2006, Australia.

B Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic. 3086, Australia.

C Corresponding authors. Email: kate.jolliffe@sydney.edu.au; elizabeth.new@sydney.edu.au

Australian Journal of Chemistry 73(10) 895-902 https://doi.org/10.1071/CH19398
Submitted: 15 August 2019  Accepted: 6 September 2019   Published: 15 October 2019

Abstract

Fluorescent sensors have proved invaluable in elucidating the regulation and dysregulation of redox processes in biology, but understanding of the breadth of biological redox reactions requires development of new sensors based on a range of sensing groups with varied reduction potentials. The aim of this work was to investigate the use of nicotinamide as a redox switch when conjugated to two classes of amino-fluorophores. We prepared four fluorophore conjugates based on 7-aminocoumarins and 4-amino-1,8-naphthalimides via the nicotinamide Zincke salt. These conjugates all showed clear fluorescence changes in response to chemical reduction, but this reduction was irreversible both chemically and electrochemically. The reduction behaviour of the 1,8-naphthalimides was investigated further by spectroelectrochemistry, revealing that conjugate NNpR1 showed the clearest spectral changes on both chemical and electrochemical reduction. Cells dosed with NNpR1 and maintained under hypoxic conditions exhibited a significantly higher green : blue fluorescence ratio than cells cultivated under normoxia, confirming the potential of this molecule as a sensor for reductive biological environments.


References

[1]  A. Kaur, J. L. Kolanowski, E. J. New, Angew. Chem. Int. Ed. 2016, 55, 1602.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  A. Kaur, E. J. New, Acc. Chem. Res. 2019, 52, 623.
         | Crossref | GoogleScholarGoogle Scholar | 30747522PubMed |

[3]  K. Lee, V. Dzubeck, L. Latshaw, J. P. Schneider, J. Am. Chem. Soc. 2004, 126, 13616.
         | Crossref | GoogleScholarGoogle Scholar | 15493909PubMed |

[4]  E. W. Miller, S. X. Bian, C. J. Chang, J. Am. Chem. Soc. 2007, 129, 3458.
         | Crossref | GoogleScholarGoogle Scholar | 17335279PubMed |

[5]  Y. Yamada, Y. Tomiyama, A. Morita, M. Ikekita, S. Aoki, ChemBioChem 2008, 9, 853.
         | Crossref | GoogleScholarGoogle Scholar | 18338353PubMed |

[6]  J. Yeow, A. Kaur, M. D. Anscomb, E. J. New, Chem. Commun. 2014, 8181.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  P. Yan, M. W. Holman, P. Robustelli, A. Chowdhury, F. I. Ishak, D. M. Adams, J. Phys. Chem. B 2005, 109, 130.
         | Crossref | GoogleScholarGoogle Scholar | 16850995PubMed |

[8]  M. Harris, J. L. Kolanowski, E. S. O’Neill, C. Henoumont, S. Laurent, T. N. Parac-Vogt, E. J. New, Chem. Commun. 2018, 12986.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  K. Leslie, D. Jacquemin, E. New, K. Jolliffe, Chem. – Eur. J. 2018, 24, 5569.
         | Crossref | GoogleScholarGoogle Scholar | 29423968PubMed |

[10]  D. H. Williamson, P. Lund, H. A. Krebs, Biochem. J. 1967, 103, 514.
         | Crossref | GoogleScholarGoogle Scholar | 4291787PubMed |

[11]  S.-J. Lin, L. Guarente, Curr. Opin. Cell Biol. 2003, 15, 241.
         | Crossref | GoogleScholarGoogle Scholar | 12648681PubMed |

[12]  W.-C. Cheng, M. J. Kurth, Org. Prep. Proced. Int. 2002, 34, 585.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J. X. Qiao, in Heterocyclic Chemistry in Drug Discovery (Ed. J. J. Li) 2013, Ch. 10, pp. 398–470 (Wiley: Hoboken, NJ).

[14]  H. Pal, S. Nad, M. Kumbhakar, J. Chem. Phys. 2003, 119, 443.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. Nad, H. Pal, J. Phys. Chem. A 2001, 105, 1097.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. Saha, A. Samanta, J. Phys. Chem. A 2002, 106, 4763.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  E. J. New, ACS Sens. 2016, 1, 328.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  K. Yang, K. G. Leslie, S. Y. Kim, B. Kalionis, W. Chrzanowski, K. A. Jolliffe, E. J. New, Org. Biomol. Chem. 2018, 16, 619.
         | Crossref | GoogleScholarGoogle Scholar | 29302671PubMed |