Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Redox-Initiated Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization

Amin Reyhani A , Thomas G. McKenzie A , Qiang Fu A and Greg G. Qiao A B
+ Author Affiliations
- Author Affiliations

A Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Corresponding author. Email: gregghq@unimelb.edu.au




Amin Reyhani earned his undergraduate degree in chemical engineering from Sahand University of Technology, Iran, in 2010. He graduated from Sharif University of Technology, Iran, with his Master’s degree in chemical engineering in 2012. He completed his Ph.D. studies in chemical engineering at The University of Melbourne, Australia, under the supervision of Professor Greg Qiao in 2019. His Ph.D. research was focused on harnessing the power of Fenton chemistry in the RAFT polymerization technique.



Dr Thomas (Tom) McKenzie is originally from New Zealand, having completed his undergraduate degree at Victoria University of Wellington. After a brief stint in industry, he then went on to complete his doctoral studies under the supervision of Professors Greg Qiao and Dave Dunstan at the University of Melbourne, where he is now a Research Fellow specializing in novel strategies for externally regulated controlled polymer synthesis.



Dr Qiang Fu received his B.E. in chemical engineering from Shanghai Jiao Tong University in 2004. He completed his Ph.D. degree in polymer chemistry at Fudan University in 2009 before working as a postdoctoral fellow with Professor Greg Qiao at the University of Melbourne. He was awarded an ARC Super Science Fellowship in 2011 and an ARC Future Fellowship in 2018. His research interests range from fundamental studies to applied sciences and encompass the fields of two-dimensional polymers, macromolecular engineering and self-assembly, and membrane materials for separations.



Professor Greg Qiao received his Ph.D. degree from the University of Queensland in 1996. He joined the University of Melbourne in 1996 and became a full professor in 2009. He was the Australian Research Council’s professorial Future Fellow (2012–2015) and the Chair of the Polymer Division of the Royal Australian Chemical Institute (RACI) (2015–2016). He received the Applied Research Award in 2017, ExxonMobil Award in 2015, RACI’s Polymer Division Citation in 2011, and Freehills Award in 2010. He has published more than 250 journal papers and is a co-inventor in more than 20 patents. His key research interests are in polymeric architectures, new activation methods for RAFT, peptide polymers, tissue scaffolds, and gas membranes.

Australian Journal of Chemistry 72(7) 479-489 https://doi.org/10.1071/CH19109
Submitted: 6 March 2019  Accepted: 11 May 2019   Published: 12 June 2019

Abstract

Reversible addition–fragmentation chain transfer (RAFT) polymerization initiated by a radical-forming redox reaction between a reducing and an oxidizing agent (i.e. ‘redox RAFT’) represents a simple, versatile, and highly useful platform for controlled polymer synthesis. Herein, the potency of a wide range of redox initiation systems including enzyme-mediated redox reactions, the Fenton reaction, peroxide-based reactions, and metal-catalyzed redox reactions, and their application in initiating RAFT polymerization, are reviewed. These redox-RAFT polymerization methods have been widely studied for synthesizing a broad range of homo- and co-polymers with tailored molecular weights, compositions, and (macro)molecular structures. It has been demonstrated that redox-RAFT polymerization holds particular promise due to its excellent performance under mild conditions, typically operating at room temperature. Redox-RAFT polymerization is therefore an important and core part of the RAFT methodology handbook and may be of particular importance going forward for the fabrication of polymeric biomaterials under biologically relevant conditions or in biological systems, in which naturally occurring redox reactions are prevalent.


References

[1]  (a) J.-S. Wang, K. Matyjaszewski, Macromolecules 1995, 28, 7901.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Macromolecules 1995, 28, 1721.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev. 2001, 101, 3661.
         | Crossref | GoogleScholarGoogle Scholar | 11740918PubMed |

[3]  (a) G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2012, 65, 985.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Chiefari, Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. Le, R. T. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, Macromolecules 1998, 31, 5559.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. Zhong, K. Matyjaszewski, Macromolecules 2011, 44, 2668.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) M. Kopeć, P. Krys, R. Yuan, K. Matyjaszewski, Macromolecules 2016, 49, 5877.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. Martin, G. Gody, S. Perrier, Polym. Chem. 2015, 6, 4875.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. R. Hill, R. N. Carmean, B. S. Sumerlin, Macromolecules 2015, 48, 5459.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Roa-Luna, G. Jaramillo-Soto, P. V. Castañeda-Flores, E. Vivaldo-Lima, Chem. Eng. Technol. 2010, 33, 1893.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. G. McKenzie, Q. Fu, E. H. Wong, D. E. Dunstan, G. G. Qiao, Macromolecules 2015, 48, 3864.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) X. Tian, J. Ding, B. Zhang, F. Qiu, X. Zhuang, Y. Chen, Polymers 2018, 10, 318.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  T. G. McKenzie, Q. Fu, M. Uchiyama, K. Satoh, J. Xu, C. Boyer, M. Kamigaito, G. G. Qiao, Adv. Sci. 2016, 3, 1500394.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  D. J. Keddie, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 2012, 45, 5321.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  G. Moad, E. Rizzardo, S. H. Thang, Chem. Asian J. 2013, 8, 1634.
         | Crossref | GoogleScholarGoogle Scholar | 23606667PubMed |

[9]  R. Nicolaÿ, Y. Kwak, Isr. J. Chem. 2012, 52, 288.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) S. Kobayashi, H. Uyama, S. Kimura, Chem. Rev. 2001, 101, 3793.
         | Crossref | GoogleScholarGoogle Scholar | 11740921PubMed |
      (b) S. R. Zavada, T. Battsengel, T. F. Scott, Int. J. Mol. Sci. 2016, 17, 195.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) H. Wang, Q. Li, J. Dai, F. Du, H. Zheng, R. Bai, Macromolecules 2013, 46, 2576.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Y. Khan, M.-S. Cho, Y.-J. Kwark, Macromolecules 2014, 47, 1929.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Shanmugam, J. Xu, C. Boyer, J. Am. Chem. Soc. 2015, 137, 9174.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Xu, K. Jung, A. Atme, S. Shanmugam, C. Boyer, J. Am. Chem. Soc. 2014, 136, 5508.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. Xu, S. Shanmugam, H. Duong, C. Boyer, Polym. Chem. 2015, 6, 5615.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. Xu, S. Shanmugam, C. Fu, K.-F. Aguey-Zinsou, C. Boyer, J. Am. Chem. Soc. 2016, 138, 3094.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  C. Ding, C. Fan, G. Jiang, X. Pan, Z. Zhang, J. Zhu, X. Zhu, Macromol. Rapid Commun. 2015, 36, 2181.
         | Crossref | GoogleScholarGoogle Scholar | 26445213PubMed |

[13]  M. Chen, M. Zhong, J. A. Johnson, Chem. Rev. 2016, 116, 10167.
         | Crossref | GoogleScholarGoogle Scholar | 26978484PubMed |

[14]  J. Niu, D. J. Lunn, A. Pusuluri, J. I. Yoo, M. A. O’Malley, S. Mitragotri, H. T. Soh, C. J. Hawker, Nat. Chem. 2017, 9, 537.
         | Crossref | GoogleScholarGoogle Scholar | 28537595PubMed |

[15]  (a) J. Vandenbergh, B. Schweitzer-Chaput, M. Klussmann, T. Junkers, Macromolecules 2016, 49, 4124.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. Zheng, W. Bai, K. Hu, R. Bai, C. Pan, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2575.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Luo, M. Li, M. Xin, W. Sun, Macromol. Chem. Phys. 2015, 216, 1646.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W. Bai, L. Zhang, R. Bai, G. Zhang, Macromol. Rapid Commun. 2008, 29, 562.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. Guinaudeau, S. Mazières, D. J. Wilson, M. Destarac, Polym. Chem. 2012, 3, 81.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) G. Li, H. Zheng, R. Bai, Macromol. Rapid Commun. 2009, 30, 442.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. Şenel, I.-Y. Belma, O. Güven, Turk. J. Chem. 1996, 20, 62.

[17]  I. Van Nieuwenhove, S. Maji, M. Dash, S. Van Vlierberghe, R. Hoogenboom, P. Dubruel, Polym. Chem. 2017, 8, 2433.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  A. Guinaudeau, O. Coutelier, A. l. Sandeau, S. p. Mazières, H. D. Nguyen Thi, V. Le Drogo, D. J. Wilson, M. Destarac, Macromolecules 2014, 47, 41.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  K. Kempe, P. A. De Jongh, A. Anastasaki, P. Wilson, D. M. Haddleton, Chem. Commun. 2015, 51, 16213.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) P. A. de Jongh, A. Mortiboy, G. S. Sulley, M. R. Bennett, A. Anastasaki, P. Wilson, D. M. Haddleton, K. Kempe, ACS Macro Lett. 2016, 5, 321.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. M. Mahmoud, A. Rajakanthan, K. Kempe, Polym. Chem. 2018, 9, 1562.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. A. de Jongh, M. R. Bennett, G. S. Sulley, P. Wilson, T. P. Davis, D. M. Haddleton, K. Kempe, Polym. Chem. 2016, 7, 6703.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  L. Martin, G. Gody, S. Perrier, in Reversible Deactivation Radical Polymerization: Materials and Applications (Eds K. Matyjaszewski, H. Gao, B. S. Sumerlin, N. V. Tsarevsky) 2018, pp. 57–79 (American Chemical Society: Washington, D.C.).

[22]  O. Deane, J. Lovett, O. Musa, A. Fernyhough, S. Armes, Macromolecules 2018, 51, 7756.
         | Crossref | GoogleScholarGoogle Scholar | 30333669PubMed |

[23]  B. Zhang, X. Wang, A. Zhu, K. Ma, Y. Lv, X. Wang, Z. An, Macromolecules 2015, 48, 7792.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  S. Kobayashi, A. Makino, Chem. Rev. 2009, 109, 5288.
         | Crossref | GoogleScholarGoogle Scholar | 19824647PubMed |

[25]  A. P. Danielson, D. B. Van Kuren, M. E. Lucius, K. Makaroff, C. Williams, R. C. Page, J. A. Berberich, D. Konkolewicz, Macromol. Rapid Commun. 2016, 37, 362.
         | Crossref | GoogleScholarGoogle Scholar | 26748786PubMed |

[26]  A. Danielson, D. Van-Kuren, J. Bornstein, C. Kozuszek, J. Berberich, R. Page, D. Konkolewicz, Polymers 2018, 10, 741.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  (a) R. Chapman, A. J. Gormley, K.-L. Herpoldt, M. M. Stevens, Macromolecules 2014, 47, 8541.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. Chapman, A. J. Gormley, M. H. Stenzel, M. M. Stevens, Angew. Chem. 2016, 55, 4500.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  Y. Lv, Z. Liu, A. Zhu, Z. An, J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 164.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  L. Brocken, P. D. Price, J. Whittaker, I. R. Baxendale, React. Chem. Eng. 2017, 2, 662.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  (a) A. Reyhani, T. G. McKenzie, H. Ranji‐Burachaloo, Q. Fu, G. G. Qiao, Chem. – Eur. J. 2017, 23, 7221.
         | Crossref | GoogleScholarGoogle Scholar | 28382790PubMed |
      (b) M. D. Nothling, T. G. McKenzie, A. Reyhani, G. G. Qiao, Macromol. Rapid Commun. 2018, 39, 1800179.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Reyhani, M. N. Nothling, H. Ranji-Burachaloo, T. G. McKenzie, Q. Fu, S. Tan, G. Bryant, G. G. Qiao, Angew. Chem. Int. Ed. 2018, 57, 10288.
         | Crossref | GoogleScholarGoogle Scholar |
         (d) T. G. McKenzie, A. Reyhani, M. D. Nothling, G. G. Qiao, in Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies (Eds K. Matyjaszewski, H. Gao, B. S. Sumerlin, N. V. Tsarevsky) 2018, pp. 307–321 (American Chemical Society: Washington, D.C.).
      (e) A. Reyhani, S. Allison-Logan, H. Ranji-Burachaloo, T. G. McKenzie, G. Bryant, G. G. Qiao, J. Polym. Sci., Part A: Polym. Chem. 2019, in press

[31]  D. Roy, A. Ullah, B. S. Sumerlin, Macromolecules 2009, 42, 7701.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  Y. Shi, H. Gao, L. Lu, Y. Cai, Chem. Commun. 2009, 11, 1368.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  G. Gody, R. Barbey, M. Danial, S. Perrier, Polym. Chem. 2015, 6, 1502.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  (a) T. Junkers, B. Wenn, React. Chem. Eng. 2016, 1, 60.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) B. Wenn, T. Junkers, Macromolecules 2016, 49, 6888.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  A. Reyhani, H. Ranji-Burachaloo, T. G. McKenzie, Q. Fu, G. G. Qiao, Macromolecules 2019, 52, 3278.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  (a) Q. Zhang, Z. Zhang, W. Wang, J. Zhu, Z. Cheng, N. Zhou, W. Zhang, X. Zhu, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 1424.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) N. Haridharan, R. Dhamodharan, J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 1021.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Kwak, K. Matyjaszewski, Macromolecules 2008, 41, 6627.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Kwak, R. Nicolaÿ, K. Matyjaszewski, Macromolecules 2008, 41, 6602.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) N. Haridharan, K. Ponnusamy, R. Dhamodharan, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 5329.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) S. Harihara Subramanian, R. Prakash Babu, R. Dhamodharan, Macromolecules 2008, 41, 262.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) Z. Zhang, W. Wang, H. Xia, J. Zhu, W. Zhang, X. Zhu, Macromolecules 2009, 42, 7360.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) R. Nicolaÿ, Y. Kwak, K. Matyjaszewski, Macromolecules 2008, 41, 4585.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  R. Nicolay, Y. Kwak, K. Matyjaszewski, Angew. Chem. Int. Ed. 2010, 49, 541.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  Y. Gu, J. Zhao, Q. Liu, X. Pan, W. Zhang, Z. Zhang, X. Zhu, Polym. Chem. 2015, 6, 359.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  Z. Zhang, W. Wang, Z. Cheng, J. Zhu, N. Zhou, Y. Yang, Y. Tu, X. Zhu, Macromolecules 2010, 43, 7979.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  Y. Zhang, K. Schröder, Y. Kwak, P. Krys, A. N. Morin, T. Pintauer, R. Poli, K. Matyjaszewski, Macromolecules 2013, 46, 5512.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  H. Jiang, L. Zhang, X. Jiang, X. Bao, Z. Cheng, X. Zhu, Macromol. Rapid Commun. 2014, 35, 1332.
         | Crossref | GoogleScholarGoogle Scholar | 24943002PubMed |

[42]  J. Kreutzer, Y. Yagci, Polymers 2017, 10, 35.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  P. Maximiano, P. V. Mendonça, J. R. Costa, N. L. Haworth, A. C. Serra, T. Guliashvili, M. L. Coote, J. F. Coelho, Macromolecules 2016, 49, 1597.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  J. Yeow, R. Chapman, A. J. Gormley, C. Boyer, Chem. Soc. Rev. 2018, 47, 4357.
         | Crossref | GoogleScholarGoogle Scholar | 29718038PubMed |

[45]  (a) G. Ng, J. Yeow, R. Chapman, N. Isahak, E. Wolvetang, J. J. Cooper-White, C. Boyer, Macromolecules 2018, 51, 7600.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. J. Gormley, J. Yeow, G. Ng, Ó. Conway, C. Boyer, R. Chapman, Angew. Chem. Int. Ed. 2018, 57, 1557.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  S. Shanmugam, J. Xu, C. Boyer, Macromol. Rapid Commun. 2017, 38, 1700143.
         | Crossref | GoogleScholarGoogle Scholar | 28556363PubMed |

[47]  (a) V. Kottisch, Q. Michaudel, B. P. Fors, J. Am. Chem. Soc. 2016, 138, 15535.
         | Crossref | GoogleScholarGoogle Scholar | 27934022PubMed |
      (b) V. Kottisch, Q. Michaudel, B. P. Fors, J. Am. Chem. Soc. 2017, 139, 10665.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  B. M. Peterson, S. Lin, B. P. Fors, J. Am. Chem. Soc. 2018, 140, 2076.
         | Crossref | GoogleScholarGoogle Scholar | 29385348PubMed |