Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Theoretical Study on Pyramidal C7N6–H3R3 Molecules

Bing He A , Bingke Li A and Hongwei Zhou https://orcid.org/0000-0002-7291-6398 A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University, Chengdu, Sichuan 611130, China.

B Corresponding author. Email: jcbzhou@sina.com

Australian Journal of Chemistry 72(7) 501-512 https://doi.org/10.1071/CH19015
Submitted: 11 January 2019  Accepted: 15 March 2019   Published: 24 April 2019

Abstract

The pyramidal molecule C7N6H6 and its nine symmetric tri-substituted derivatives C7N6–H3R3 (R = OH, F, CN, N3, NH2, NO2, N=NH, N2H3, and C≡CH) were investigated computationally using the GAUSSIAN 09 program package. Natural bond orbital and atoms in molecules analyses, as well as valence bond theory were applied to investigate the bonding properties. In comparison to their well known analogues C6N7–R3, i.e. generic heptazines, it is found that these 10 molecules are all reactive. Further studies on the topological structures and ionization energy values indicate that the reactive site of the molecules is located at the carbon atom of the core frame. Even though C7N6–H3R3 are neutral molecules, the structures and properties of some are consistent with those of a carbanion, and indeed, they act like carbanions, or so-called carbanionoids. These carbanionoids may have an extensive impact in organic chemistry and organometallic chemistry.


References

[1]  J. Liebig, Ann. Phys. 1835, 110, 570.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  E. Wirnhier, M. B. Mesch, J. Senker, W. Schnick, Chem. – Eur. J. 2013, 19, 2041.
         | Crossref | GoogleScholarGoogle Scholar | 23255409PubMed |

[3]  Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem. Int. Ed. 2015, 54, 12868.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  L. Pauling, J. H. Sturdivant, Proc. Natl. Acad. Sci. USA 1937, 23, 615.
         | Crossref | GoogleScholarGoogle Scholar | 16577829PubMed |

[5]  M. Shahbaz, S. Urano, P. R. LeBreton, M. A. Rossman, R. S. Hosmane, N. J. Leonard, J. Am. Chem. Soc. 1984, 106, 2805.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  E. Kroke, M. Schwarz, E. H. Bordon, P. Kroll, B. Noll, A. D. Norman, New J. Chem. 2002, 26, 508.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  A. Schwarzer, T. Saplinova, E. Kroke, Coord. Chem. Rev. 2013, 257, 2032.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick, J. Am. Chem. Soc. 2003, 125, 10288.
         | Crossref | GoogleScholarGoogle Scholar | 12926953PubMed |

[9]  Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 11926.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Y. He, L. Zhang, B. Teng, M. Fan, Environ. Sci. Technol. 2015, 49, 649.
         | Crossref | GoogleScholarGoogle Scholar | 25485763PubMed |

[11]  F. K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick, X. Wang, M. J. Bojdys, Nat. Rev. Mater. 2017, 2, 17030.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  W. X. Zheng, N. B. Wong, W. Z. Wang, G. Zhou, A. M. Tian, J. Phys. Chem. A 2004, 108, 97.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  W. X. Zheng, N. B. Wong, G. Zhou, X. Q. Liang, J. S. Li, A. M. Tian, New J. Chem. 2004, 28, 275.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  W. X. Zheng, N. B. Wong, X. Q. Liang, X. P. Long, A. M. Tian, J. Phys. Chem. A 2004, 108, 840.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  W. X. Zheng, N. B. Wong, W.-K. Li, A. M. Tian, J. Chem. Theory Comput. 2006, 2, 808.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  See pp. 389–577 in: F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, 5th edn 2007 (Springer Science & Business Media: Berlin).

[17]  See pp. 221–233 in: M. B. Smith, J. March, March’s Advanced Organic Chemistry Reactions, 7th edn 2013 (John Wiley & Sons Inc.: New York, NY).

[18]  S. Itoh, H. Yamataka, Chem. – Eur. J. 2011, 17, 1230.
         | Crossref | GoogleScholarGoogle Scholar | 21243689PubMed |

[19]  V. Grignard, Compt. Rend. 1900, 130, 1322.

[20]  D. A. Shirley, Org. React. 2011, 8, 28.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  X.-J. Dai, H. Wang, C.-J. Li, Angew. Chem. 2017, 129, 6399.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  H. Gilman, R. H. Kirby, J. Am. Chem. Soc. 1933, 55, 1265.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  X. Yang, F. F. Fleming, Acc. Chem. Res. 2017, 50, 2556.
         | Crossref | GoogleScholarGoogle Scholar | 28930437PubMed |

[24]  S. S. Mudaliar, S. N. Zala, K. H. Chikhalia, J. Organomet. Chem. 2017, 848, 142.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  Y. Nobe, K. Arayama, H. Urabe, J. Am. Chem. Soc. 2005, 127, 18006.
         | Crossref | GoogleScholarGoogle Scholar | 16366543PubMed |

[26]  M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1985, 107, 2174.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  T. Sato, T. Tsuneda, K. Hirao, Mol. Phys. 2005, 103, 1151.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  K. Müller-Dethlefs, P. Hobza, Chem. Rev. 2000, 100, 143.
         | Crossref | GoogleScholarGoogle Scholar | 11749236PubMed |

[29]  See pp. 203–243 in: C. J. Cramer, Essentials of Computational Chemistry, 2nd edn 2013 (John Wiley & Sons Inc.: New York, NY).

[30]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01 2009 (Gaussian, Inc.: Wallingford, CT).

[31]  A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  (a) T. A. Manz, N. Gabaldon-Limas, RSC Adv. 2016, 6, 47771.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) N. Gabaldon-Limas, T. A. Manz, RSC Adv. 2016, 6, 45727.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  F. Biegler–Künig, J. Schünbohm, R. Derdau, D. Bayles, R. F. W. Bader, AIM 2000, version 2.0 2002 (McMaster University: Hamilton).

[35]  See pp. 275–426 in: R. F. W. Bader, Atoms in Molecules, A Quantum Theory 1994 (Oxford University Press: Oxford).

[36]  P. L. A. Popelier, Mol. Phys. 1996, 87, 1169.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  J. G. Angyan, G. Jansen, M. Loos, C. Hattig, B. A. Hess, Chem. Phys. Lett. 1994, 219, 267.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  See pp. 649–664 in: J. S. Murray, K. D. Sen, Molecular Electrostatic Potentials, Vol. 3: Concepts and Applications (Theory and Computational Chemistry) 1996 (Elsevier: Amsterdam).

[39]  A. Kumar, S. R. Gadre, J. Chem. Theory Comput. 2016, 12, 1705.
         | Crossref | GoogleScholarGoogle Scholar | 26881455PubMed |

[40]  J. S. Murray, P. Politzer, Comput. Mol. Sci. 2011, 1, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  K.-C. Lau, C.-Y. Ng, Acc. Chem. Res. 2006, 39, 823.
         | Crossref | GoogleScholarGoogle Scholar | 17115722PubMed |

[42]  H. W. Zhou, N.-B. Wong, A. M. Tian, W.-K. Li, J. Mol. Graphics Modell. 2007, 26, 788.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, J. A. Pople, J. Chem. Phys. 1998, 109, 7764.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  H. W. Zhou, N.-B. Wong, G. Zhou, A. M. Tian, J. Phys. Chem. A 2006, 110, 3845.
         | Crossref | GoogleScholarGoogle Scholar |