Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Overcoming the Challenges of Hydrogenation in Silicon Solar Cells*

Brett J. Hallam A C , Alison M. Ciesla A , Catherine C. Chan A , Anastasia Soeriyadi A , Shaoyang Liu A , Arman Mahboubi Soufiani A , Matthew Wright A and Stuart Wenham A B
+ Author Affiliations
- Author Affiliations

A School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

B Deceased.

C Corresponding author. Email: brett.hallam@unsw.edu.au

Australian Journal of Chemistry 71(10) 743-752 https://doi.org/10.1071/CH18271
Submitted: 2 June 2018  Accepted: 24 August 2018   Published: 19 September 2018

Journal Compilation © CSIRO 2018 Open Access CC BY-NC-ND

Abstract

The challenges of passivating defects in silicon solar cells using hydrogen atoms are discussed. Atomic hydrogen is naturally incorporated into conventional silicon solar cells through the deposition of hydrogen-containing dielectric layers and the metallisation firing process. The firing process can readily passivate certain structural defects such as grain boundaries. However, the standard hydrogenation processes are ineffective at passivating numerous defects in silicon solar cells. This difficulty can be attributed to the atomic hydrogen naturally occupying low-mobility and low-reactivity charge states, or the thermal dissociation of hydrogen–defect complexes. The concentration of the highly mobile and reactive neutral-charge state of atomic hydrogen can be enhanced using excess carriers generated by light. Additional low-temperature hydrogenation processes implemented after the conventional fast-firing hydrogenation process are shown to improve the passivation of difficult structural defects. For process-induced defects, careful attention must be paid to the process sequence to ensure that a hydrogenation process is included after the defects are introduced into the device. Defects such as oxygen precipitates that form during high-temperature diffusion and oxidation processes can be passivated during the subsequent dielectric deposition and high-temperature firing process. However, for laser-based processes performed after firing, an additional hydrogenation process should be included after the introduction of the defects. Carrier-induced defects are even more challenging to passivate, and advanced hydrogenation methods incorporating minority carrier injection must be used to induce defect formation first, and, second, provide charge state manipulation to enable passivation. Doing so can increase the performance of industrial p-type Czochralski solar cells by 1.1 % absolute when using a new commercially available laser-based advanced hydrogenation tool.


References

[1]  VDMA Photovoltaic Equipment, International Technology Roadmap for Photovoltaic: 2016 Results 2017, Frankfurt, Germany.

[2]  VDMA Photovoltaic Equipment, International Technology Roadmap for Photovoltaic: Germany 2018, Frankfurt, Germany.

[3]  http://pvinsights.com (accessed 29 August 2018).

[4]  C. Boehme, G. Lucovsky, J. Appl. Phys. 2000, 88, 6055.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  G. Dingemans, M. C. M. van de Sanden, W. M. M. Kessels, Electrochem. Solid-State Lett. 2010, 13, H76.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Z. Wang, P. Han, H. Lu, H. Qian, L. Chen, Q. Meng, N. Tang, F. Gao, Y. Jia, J. Wu, W. Wu, H. Zhu, J. Ji, Z. Shi, A. Sugianto, L. Mai, B. Hallam, S. Wenham, Prog. Photovolt. Res. Appl. 2012, 20, 260.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  M. Kim, D. Kyeong, K. Lee, W. Lee, E.-C. Cho, in 40th IEEE Photovoltaic Specialist Conference (PVSC) 2014, pp. 2823–2827 (IEEE: Piscataway, NJ).

[8]  P. Saint-Cast, J. Benick, D. Kania, L. Weiss, M. Hofmann, J. Rentsch, R. Preu, S. W. Glunz, IEEE Electron Device Lett. 2010, 31, 695.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  I. Cesar, E. Granneman, P. Vermont, H. Khatri, H. Kerp, A. Shaikh, P. Manshanden, A. A. Mewe, I. G. Romijn, A. W. Weeber, in 37th IEEE Photovoltaic Specialists Conference 2011, pp. 1405–1410 (IEEE: Piscataway, NJ).

[10]  F. Chen, I. Romijn, A. Weeber, J. Tan, B. Hallam, J. Cotter, in Proceedings of the 22nd European Photovoltaic Solar Energy Conference 2007, pp. 1053–1060 (WIP: Munich).

[11]  B. Hallam, B. Tjahjono, S. Wenham, Sol. Energy Mater. Sol. Cells 2012, 96, 173.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. de Sanden, W. M. M. Kessels, Appl. Phys. Lett. 2006, 89, 42112.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J. Schmidt, M. Kerr, Sol. Energy Mater. Sol. Cells 2001, 65, 585.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H. F. W. Dekkers, S. De Wolf, G. Beaucarne, Sol. Energy Mater. Sol. Cells 2006, 90, 3438.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. Wilking, A. Herguth, G. Hahn, Energy Procedia 2013, 38, 642.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. Dubois, F. Tanay, J. Veirman, N. Enjalbert, J. Stendera, S. Butté, P. Pochet, D. Caliste, Y. Mao, D. Timerkaeva, D. Blanc, K. Fraser, M. Lemiti, O. Palais, I. Périchaud, B. Dridi Rezgui, V. Mong-The Yen, M. Pasquinelli, M. Gerard, F. Madon, N. Le Quang, in 27th European Photovoltaic Solar Energy Conference 2012, pp. 749–754 (WIP: Munich).

[17]  W. Soppe, H. Rieffe, A. Weeber, Prog. Photovolt. Res. Appl. 2005, 13, 551.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  B. Hallam, D. Chen, M. Kim, B. Stefani, B. Hoex, M. Abbott, S. Wenham, Phys. Status Solidi. A: Appl. Mater. Sci. 2017, 214, 1700305.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  A. G. Aberle, Sol. Energy Mater. Sol. Cells 2001, 65, 239.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  R. Lüdemann, Mater. Sci. Eng. B 1999, 58, 86.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Z. Chen, A. Rohatgi, R. O. Bell, J. P. Kalejs, Appl. Phys. Lett. 1994, 65, 2078.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  F. Duerinckx, J. Szlufcik, Sol. Energy Mater. Sol. Cells 2002, 72, 231.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  R. Einhaus, F. Duerinckx, E. Van Kerschaver, J. Szlufcik, F. Durand, P. J. Ribeyron, J. C. Duby, D. Sarti, G. Goaer, G. N. Le, Mater. Sci. Eng. B 1999, 58, 81.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  L. J. Geerligs, A. Azzizi, D. H. Macdonald, P. Manshanden, in 13th Workshop on Crystalline Silicon Solar Cell Materials and Processes 2003, pp. 199–202 (National Renewable Energy Laboratory: Golden, CO).

[25]  R. Singh, S. J. Fonash, A. Rohatgi, Appl. Phys. Lett. 1986, 49, 800.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  A. J. Tavendale, S. J. Pearton, J. Phys. C: Solid State Phys. 1983, 16, 1665.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  N. H. Nickel, N. M. Johnson, W. B. Jackson, Appl. Phys. Lett. 1993, 62, 3285.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  N. Yarykin, J. U. Sachse, H. Lemke, J. Weber, Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 5551.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  R. J. Falster, D. Gambaro, M. Cornara, M. Olmo, M. Pagani, Solid State Phenom. 1997, 57–58, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  B. J. Hallam, C. E. Chan, M. D. Abbott, S. R. Wenham, Sol. Energy Mater. Sol. Cells 2015, 141, 125.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  A. Herguth, G. Schubert, M. Käs, G. Hahn, in 4th IEEE World Conference on Photovoltaic Energy Conversion 2006, 1, pp. 940–943 (IEEE: Piscataway, NJ).

[32]  K. Münzer, in 24th European Photovoltaic Solar Energy Conference 2009, pp. 1558–1561 (WIP: Munich).

[33]  A. Herguth, G. Schubert, M. Käs, G. Hahn, Prog. Photovolt. Res. Appl. 2008, 16, 135.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  P. Balk, in Electrochemical Society Spring Meeting 1965, 14, pp. 237–240 (The Electrochemical Society: Pennington, NJ).

[35]  B. E. Deal, E. L. MacKenna, P. L. Castro, J. Electrochem. Soc. 1969, 116, 997.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, M. A. Green, Appl. Phys. Lett. 1989, 55, 1363.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  R. R. King, R. A. Sinton, R. M. Swanson, IEEE Trans. Electron Dev. 1990, 37, 365.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  R. M. Swanson, U.S. Patent 4927770 1990.

[39]  J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, M. A. Green, Sol. Energy Mater. Sol. Cells 1996, 41–42, 87.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  J. Zhao, A. Wang, M. A. Green, Sol. Energy Mater. Sol. Cells 2001, 66, 27.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 2017, 2, 17032.

[42]  M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, IEEE J. Photovoltaics 2014, 4, 96.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  S. W. Glunz, F. Feldmann, A. Richter, M. Bivour, C. Reichel, H. Steinkemper, J. Benick, M. Hermle, in Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition 2015, pp. 259–263 (WIP: Munich).

[44]  A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S. W. Glunz, Sol. Energy Mater. Sol. Cells 2017, 173, 96.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  P. J. Cousins, D. D. Smith, H.-C. Luan, J. Manning, T. D. Dennis, A. Waldhauer, K. E. Wilson, G. Harley, W. P. Mulligan, in 35th IEEE Photovoltaic Specialists Conference 2010, pp. 275–278 (IEEE: Piscataway, NJ).

[46]  W. P. Mulligan, M. J. Cudzinovic, T. Pass, D. Smith, R. M. Swanson, U.S. Patent 7388147 2008.

[47]  M. Taguchi, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano, in Proceedings of the Fifth International Photovoltaic Science and Engineering Conference 1990, pp. 689–692 (Publ. Office Internat. PVSEC-5: Kyoto).

[48]  S. De Wolf, A. Descoeudres, Z. C. Holman, C. Ballif, Green 2012, 2, 7.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  J. B. Heng, C. Yu, Z. Xu, J. Fu, U.S. Patent 8686283 2014.

[50]  A. B. Turner, O. Schultz-Wuttnann, D. De Ceuster, D. E. Crafts, U.S. Patent 20120186649 2010.

[51]  J. Zhao, A. Wang, in Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion 2006, 1, pp. 996–999 (IEEE: Piscataway, NJ).

[52]  P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, R. Preu, Appl. Phys. Lett. 2009, 95, 151502.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  A. Urueña, M. Aleman, E. Cornagliotti, A. Sharma, M. Haslinger, L. Tous, R. Russell, J. John, F. Duerinckx, J. Szlufcik, Prog. Photovolt. Res. Appl. 2016, 24, 1149.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  X. Yang, J. Bullock, Q. Bi, K. Weber, Appl. Phys. Lett. 2015, 106, 113901.

[55]  J. Zhu, N. M. Johnson, C. Herring, Phys. Rev. B 1990, 41, 12354.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  D. Mathiot, Phys. Rev. B 1989, 40, 5867.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  C. H. Seager, R. A. Anderson, Appl. Phys. Lett. 1988, 53, 1181.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  C. Herring, N. M. Johnson, C. G. de Walle, Phys. Rev. B 2001, 64, 125209.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  K. Tang, E.J. Øvrelid, G. Tranell, M. Tangstad, in Crystal Growth of Si for Solar Cells (Eds K. Nakajima, N. Usami) 2009, pp. 219–251 (Springer: New York, NY).

[60]  M. Gläser, D. Lausch, Energy Procedia 2015, 77, 592.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  C. H. Seager, R. A. Anderson, Appl. Phys. Lett. 1991, 59, 585.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  C. T. Sah, J. Y. C. Sun, J. J. T. Tzou, Appl. Phys. Lett. 1983, 43, 204.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  C. Sun, F. E. Rougieux, D. Macdonald, J. Appl. Phys. 2015, 117, 45702.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  C.-T. Sah, R. N. Noyce, W. Shockley, Proc. IRE 1957, 45, 1228.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  S. R. Wenham, P. G. Hamer, B. J. Hallam, A. Sugianto, C. E. Chan, L. Song, P. H. Lu, A. M. Wenham, L. Mai, C. M. Chong, G. X. Xu, M. B. Edwards, U.S. Patent 9190556 2015.

[66]  S. Martinuzzi, I. Périchaud, F. Warchol, Sol. Energy Mater. Sol. Cells 2003, 80, 343.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  M. Sheoran, A. Upadhyaya, A. Rohatgi, Solid-State Electron. 2008, 52, 612.
         | Crossref | GoogleScholarGoogle Scholar |

[68]  J. Chen, D. Yang, Z. Xi, T. Sekiguchi, Physica B 2005, 364, 162.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  M. Sheoran, Development of High-Efficiency Solar Cells on Thin Silicon through Design Optimization and Defect Passivation 2009, Ph.D. thesis, Georgia Institute of Technology, Georgia.

[70]  B. Hallam, B. Tjahjono, T. Trupke, S. Wenham, J. Appl. Phys. 2014, 115, 44901.
         | Crossref | GoogleScholarGoogle Scholar |

[71]  T. Trupke, R. A. Bardos, M. C. Schubert, W. Warta, Appl. Phys. Lett. 2006, 89, 44107.
         | Crossref | GoogleScholarGoogle Scholar |

[72]  B. J. B. J. Hallam, P. G. P. G. Hamer, S. Wang, L. Song, N. Nampalli, M. D. M. D. Abbott, C. E. C. E. Chan, D. Lu, A. M. A. M. Wenham, L. L. Mai, N. Borojevic, A. Li, D. Chen, M. Y. Y. Kim, A. Azmi, S. Wenham, Energy Procedia 2015, 77, 799.
         | Crossref | GoogleScholarGoogle Scholar |

[73]  A. Wenham, L. Song, M. Abbott, I. Zafirovska, S. Wang, B. Hallam, C. Chan, A. Barnett, S. Wenham, Front. Energy 2017, 11, 60.
         | Crossref | GoogleScholarGoogle Scholar |

[74]  L. Song, A. Wenham, S. Wang, P. Hamer, M. S. Ahmmed, B. Hallam, L. Mai, M. Abbott, E. R. Hawkes, C. Chong, S. Wenham, Int. J. Photoenergy 2015, 2015, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[75]  B. Hallam, A. Sugianto, L. Mai, G. Xu, C. Chan, M. Abbott, S. Wenham, A. Uruena, E. Cornagliotti, M. Aleman, IEEE J. Photovoltaics 2014, 4, 1413.
         | Crossref | GoogleScholarGoogle Scholar |

[76]  P. E. Freeland, K. A. Jackson, C. W. Lowe, J. R. Patel, Appl. Phys. Lett. 1977, 30, 31.
         | Crossref | GoogleScholarGoogle Scholar |

[77]  V. V. Voronkov, R. Falster, J. Cryst. Growth 1999, 204, 462.
         | Crossref | GoogleScholarGoogle Scholar |

[78]  J. Haunschild, I. E. Reis, J. Geilker, S. Rein, Phys. Status Solidi Rapid Res. Lett. 2011, 5, 199.
         | Crossref | GoogleScholarGoogle Scholar |

[79]  J. Haunschild, M. Glatthaar, M. Demant, J. Nievendick, M. Motzko, S. Rein, E. R. Weber, Sol. Energy Mater. Sol. Cells 2010, 94, 2007.
         | Crossref | GoogleScholarGoogle Scholar |

[80]  B. J. J. Hallam, P. G. G. Hamer, S. R. R. Wenham, M. D. D. Abbott, A. Sugianto, A. M. M. Wenham, C. E. E. Chan, G. Xu, J. Kraiem, J. Degoulange, R. Einhaus, IEEE J. Photovoltaics 2014, 4, 88.
         | Crossref | GoogleScholarGoogle Scholar |

[81]  A. Sugianto, B. S. Tjahjono, J. H. Guo, S. R. Wenham, in Proceedings of the 22nd European Photovoltaic Solar Energy Conference 2007, pp. 1759–1762 (WIP: Munich).

[82]  D. Kray, A. Fell, S. Hopman, K. Mayer, G. P. Willeke, S. W. Glunz, Appl. Phys., A Mater. Sci. Process. 2008, 93, 99.
         | Crossref | GoogleScholarGoogle Scholar |

[83]  U. Jaeger, M. Okanovic, M. Hörteis, A. Grohe, R. Preu, in Proceedings of the 24th European Photovoltaic Solar Energy Conference 2009, pp. 1740–1743 (WIP: Munich).

[84]  Z. Hameiri, T. Puzzer, L. Mai, A. B. Sproul, S. R. Wenham, Prog. Photovolt. Res. Appl. 2011, 19, 391.
         | Crossref | GoogleScholarGoogle Scholar |

[85]  J. R. Köhler, P. Grabitz, S. Eisele, T. Röder, J. H. Werner, Proceedings of the 24th European Photovoltaic Solar Energy Conference 2009, pp. 1847–1850 (WIP: Munich).

[86]  B. Hallam, A. Urueña, R. Russell, M. Aleman, M. Abbott, C. Dang, S. Wenham, L. Tous, J. Poortmans, Sol. Energy Mater. Sol. Cells 2015, 89.

[87]  W. Shockley, W. T. Read, Phys. Rev. 1952, 87, 835.
         | Crossref | GoogleScholarGoogle Scholar |

[88]  R. N. Hall, Phys. Rev. 1952, 87, 387.
         | Crossref | GoogleScholarGoogle Scholar |

[89]  B. Hallam, S. Wenham, A. Sugianto, L. Mai, C. Chong, M. Edwards, D. Jordan, P. Fath, IEEE J. Photovoltaics 2011, 1, 43.
         | Crossref | GoogleScholarGoogle Scholar |

[90]  B. Hallam, High-Efficiency Laser-Doped Silicon Solar Cells with Advanced Hydrogenation 2014, Ph.D. thesis, University of New South Wales, Sydney, Australia.

[91]  S. D. Brotherton, P. Bradley, A. Gill, J. Appl. Phys. 1985, 57, 1941.
         | Crossref | GoogleScholarGoogle Scholar |

[92]  D. H. Macdonald, L. J. Geerligs, A. Azzizi, J. Appl. Phys. 2004, 95, 1021.
         | Crossref | GoogleScholarGoogle Scholar |

[93]  A. Inglese, J. Lindroos, H. Savin, Appl. Phys. Lett. 2015, 107, 52101.
         | Crossref | GoogleScholarGoogle Scholar |

[94]  J. Knobloch, S. W. Glunz, V. Henninger, W. Warta, W. Wettling, F. Schomann, W. Schmidt, A. Endros, K. Münzer, A. Endrös, K. A. Münzer, in Proceedings of the 13th European Photovoltaic Solar Energy Conference 1995, pp. 9–12 (WIP: Munich).

[95]  J. Schmidt, K. Bothe, Phys. Rev. B Condens. Matter Mater. Phys. 2004, 69, 24107.
         | Crossref | GoogleScholarGoogle Scholar |

[96]  G. Krugel, W. Wolke, J. Geilker, S. Rein, R. Preu, Energy Procedia 2011, 8, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[97]  S. Wilking, A. Herguth, G. Hahn, J. Appl. Phys. 2013, 113, 194503.
         | Crossref | GoogleScholarGoogle Scholar |

[98]  P. Hamer, B. Hallam, M. Abbott, S. Wenham, Phys. Status Solidi Rapid Res. Lett. 2015, 9, 297.
         | Crossref | GoogleScholarGoogle Scholar |

[99]  B. Lim, S. Hermann, K. Bothe, J. Schmidt, R. Brendel, in 23rd European Photovoltaic Solar Energy Conference 2008, pp. 1018–1022 (WIP: Munich).

[100]  P. Hamer, B. Hallam, M. Abbott, C. Chan, N. Nampalli, S. Wenham, Sol. Energy Mater. Sol. Cells 2016, 145, 440.
         | Crossref | GoogleScholarGoogle Scholar |

[101]  K. Ramspeck, S. Zimmermann, H. Nagel, A. Metz, Y. Gassenbauer, B. Birkmann, A. Seidl, in Proceedings of the 27th European Photovoltaic Solar Energy Conference 2012, 1, pp. 861–865 (WIP: Munich).

[102]  F. Kersten, P. Engelhart, H.-C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch, A. Szpeth, K. Petter, J. Heitmann, J. Müller, in 42nd IEEE Photovoltaic Specialist Conference 2015, pp. 1–5 (IEEE: Piscataway, NJ).

[103]  D. N. R. Payne, C. E. Chan, B. J. Hallam, B. Hoex, M. D. Abbott, S. R. Wenham, D. M. Bagnall, Phys. Status Solidi Rapid Res. Lett. 2016, 10, 237.
         | Crossref | GoogleScholarGoogle Scholar |

[104]  D. C. Walter, B. Lim, K. Bothe, V. V. Voronkov, R. Falster, J. Schmidt, Appl. Phys. Lett. 2014, 104, 42111.
         | Crossref | GoogleScholarGoogle Scholar |

[105]  N. Nampalli, B. Hallam, C. Chan, M. Abbott, S. Wenham, Appl. Phys. Lett. 2015, 106, 173501.
         | Crossref | GoogleScholarGoogle Scholar |

[106]  N. Nampalli, B. J. J. Hallam, C. E. E. Chan, M. D. D. Abbott, S. R. R. Wenham, IEEE J. Photovoltaics 2015, 5, 1580.
         | Crossref | GoogleScholarGoogle Scholar |

[107]  N. Nampalli, H. Li, M. Kim, B. Stefani, S. Wenham, B. Hallam, M. Abbott, Sol. Energy Mater. Sol. Cells 2017, 173.

[108]  A. Herguth, G. Schubert, M. Kaes, G. Hahn, in IEEE 4th World Conference on Photovoltaic Energy Conversion 2006, pp. 940–943 (IEEE: Piscataway, NJ).

[109]  B. Lim, K. Bothe, J. Schmidt, Phys. Status Solidi Rapid Res. Lett. 2008, 2, 93.
         | Crossref | GoogleScholarGoogle Scholar |

[110]  S. Wilking, C. Beckh, S. Ebert, A. Herguth, G. Hahn, Sol. Energy Mater. Sol. Cells 2014, 131, 2.
         | Crossref | GoogleScholarGoogle Scholar |

[111]  B. J. J. Hallam, M. D. Abbott, N. Nampalli, P. G. G. Hamer, S. R. R. Wenham, IEEE J. Photovoltaics 2016, 6, 92.
         | Crossref | GoogleScholarGoogle Scholar |

[112]  B. Hallam, M. Abbott, N. Nampalli, P. Hamer, S. Wenham, J. Appl. Phys. 2016, 119, 65701.
         | Crossref | GoogleScholarGoogle Scholar |

[113]  B. J. Hallam, C. E. Chan, R. Chen, S. Wang, J. Ji, L. Mai, M. D. Abbott, D. N. R. Payne, M. Kim, D. Chen, C. Chong, S. R. Wenham, Jpn. J. Appl. Phys. 2017, 56, 08MB13.
         | Crossref | GoogleScholarGoogle Scholar |

[114]  E. Cornagliotti, A. Uruena, B. Hallam, L. Tous, R. Russell, F. Duerinckx, J. Szlufcik, Sol. Energy Mater. Sol. Cells 2015, 138.

[115]  R. A. Sinton, A. Cuevas, M. Stuckings, in Proceedings of the 25th IEEE Photovoltaic Specialists Conference 1996, pp. 457–460 (IEEE: Piscataway, NJ).

[116]  H. Nagel, C. Berge, A. G. Aberle, J. Appl. Phys. 1999, 86, 6218.
         | Crossref | GoogleScholarGoogle Scholar |

[117]  A. Richter, S. W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Phys. Rev. B 2012, 86, 165202.
         | Crossref | GoogleScholarGoogle Scholar |

[118]  K. Bothe, J. Schmidt, J. Appl. Phys. 2006, 99, 13701.
         | Crossref | GoogleScholarGoogle Scholar |