Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Brønsted Acid-Catalysed Allylic Amination of 1-(2-Aminoaryl)prop-2-en-1-ols to 1,2-Dihydroquinolines

David Philip Day A , Stuart Adam Henry A , Yichao Zhao B , Jianwen Jin B , Guy James Clarkson A and Philip Wai Hong Chan A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.

B School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

C Corresponding author. Email: phil.chan@monash.edu

Australian Journal of Chemistry 71(9) 673-681 https://doi.org/10.1071/CH18191
Submitted: 29 April 2018  Accepted: 22 May 2018   Published: 19 June 2018

Abstract

A highly efficient synthetic method to prepare 1,2-dihydroquinolines that relies on trifluoromethanesulfonic acid (TfOH)-catalysed allylic amination of 1-(2-aminoaryl)prop-2-en-1-ols is described. Achieved at a catalyst loading of 0.01 mol-% under mild conditions at room temperature, the reaction was found to be robust, with a wide range of substitution patterns tolerated. The corresponding N-heterocyclic adducts were obtained in good to excellent yields of 45–93 %.


References

[1]  (a) Selected reviews: S. M. Prajapati, K. D. Patel, R. H. Vekariya, S. N. Panchala, H. D. Patel, RSC Adv. 2014, 4, 24463.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) V. Sridharan, P. A. Suryavanshi, J. C. Menendez, Chem. Rev. 2011, 111, 7157.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) A. G. Montalban, in Heterocycles in Natural Product Synthesis (Eds K. C. Majumdar, S. K. Chattopadhyay) 2011, Ch. 9, 299–339 (Wiley-VCH: Weinheim).
      (d) J. P. Michael, Nat. Prod. Rep. 2008, 25, 166.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) Selected recent examples: X. Chen, J. T. Merrett, P. W. H. Chan, Org. Lett. 2018, 20, 1542.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Zhou, H. Xie, Org. Biomol. Chem. 2018, 16, 380.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Ramanivas, G. Gayatri, D. Priyanka, V. L. Nayak, K. K. Singarapu, A. K. Srivastava, RSC Adv. 2015, 5, 73373.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. J. Lee, D. E. Lee, D. Y. Kim, Bull. Korean Chem. Soc. 2015, 36, 370.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Z. Wang, S. Li, B. Yu, H. Wu, Y. Wang, X. Sun, J. Org. Chem. 2012, 77, 8615.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) W. Rao, P. Kothandaraman, C. B. Koh, P. W. H. Chan, Adv. Synth. Catal. 2010, 352, 2521.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) P. D. Macleod, A. M. Reckling, C.-J. Li, Heterocycles 2010, 80, 1319.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) P. Kothandaraman, S. J. Foo, P. W. H. Chan, J. Org. Chem. 2009, 74, 5947.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) Selected recent reviews on the use of π-rich alcohols as pro-electrophiles: L. Zhang, G. Fang, R. K. Kumar, X. Bi, Synthesis 2015, 2317.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) B. J. Ayers, P. W. H. Chan, Synlett 2015, 1305.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Ljungdahl, N. Kann, Angew. Chem. Int. Ed. 2009, 48, 642.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Bandini, N. Tragni, Org. Biomol. Chem. 2009, 7, 1501.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) Selected recent examples, see refs [2b], [2d–f], [2h], and: L. Lempenauer, E. Dunach, G. Lemiere, Chem. – Eur. J. 2017, 23, 10285.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Xu, J. Sun, J. Zhao, B. Huang, X. Li, Y. Sun, RSC Adv. 2017, 7, 36242.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Baeza, C. Nájera, Synthesis 2014, 25.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. Zhang, Z. P. Yang, C. Liu, S. L. You, Chem. Sci. 2013, 4, 3239.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) X. Zhou, H. Zhang, X. Xie, Y. Li, J. Org. Chem. 2008, 73, 3958.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  AuCl3: A$296 for 1 g; AgSbF6: A$39.50 for 1 g (source: Sigma–Aldrich, Australia: https://www.sigmaaldrich.com/australia.html).

[6]  (a) Selected reviews on Brønsted acid catalysis: J. Merad, C. Lalli, G. Bernadat, J. Maury, G. Masson, Chem. – Eur. J. 2018, 24, 3925.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) T. James, M. van Gemmeren, B. List, Chem. Rev. 2015, 115, 9388.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Akiyama, K. Mori, Chem. Rev. 2015, 115, 9277.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. H. Cheon, H. Yamamoto, Chem. Commun. 2011, 3043.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. Terada, Chem. Commun. 2008, 4097.
         | Crossref | GoogleScholarGoogle Scholar |
         (g) Lewis Acids in Organic Synthesis (Ed. H. Yamamoto) 2008 (Wiley-VCH: Weinheim).

[7]  During the completion of this work, Zhou and Xie reported the chiral Brønsted acid-catalysed enantioselective allylic amination of 1,3-diaryl-substituted allylic alcohols to 1,2-dihydroquinolines; see ref. [2b].

[8]  (a) Selected examples: J. Jin, Y. Zhao, A. Gouranourimi, A. Ariafard, P. W. H. Chan, J. Am. Chem. Soc. 2018, 140, 5834.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) D. Susanti, L. L. R. Ng, P. W. H. Chan, Adv. Synth. Catal. 2014, 356, 353.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. R. Mothe, P. Kothandaraman, S. J. L. Lauw, P. W. H. Chan, J. Org. Chem. 2012, 77, 6937.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. R. Mothe, P. Kothandaraman, W. Rao, P. W. H. Chan, J. Org. Chem. 2011, 76, 2521.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) X. Zhang, W. T. Teo, P. W. H. Chan, J. Org. Chem. 2010, 75, 6290.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) S. R. Mothe, P. W. H. Chan, J. Org. Chem. 2009, 74, 5887.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  For the synthesis of substrate 1, see refs [2d], [2h] and: P. Kothandaraman, C. Huang, D. Susanti, W. Rao, P. W. H. Chan, Chem. – Eur. J. 2011, 17, 10081.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  See Figs S32–S34 in the Supplementary Material for the ORTEP drawings of the crystal structures for 2j, 2m, and 2n.

[11]  M. Rueping, U. Uria, M. Y. Lin, I. Atodiresei, J. Am. Chem. Soc. 2011, 133, 3732.
         | Crossref | GoogleScholarGoogle Scholar |