New Insights into Adsorption Behaviour of NH3 Molecules on Small (SiO2)n (n = 2–7) Clusters Through Systematic Analysis of Structural and Topological Properties
Wen-Xia Niu A , Tao Gao B , Hong Zhang B and Peng Li C DA Department of Physics, Taiyuan Normal University, Taiyuan 030031, China.
B College of Physical Science and Technology, Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
C School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China.
D Corresponding author. Email: lip@sxu.edu.cn
Australian Journal of Chemistry 71(7) 482-491 https://doi.org/10.1071/CH18152
Submitted: 9 April 2018 Accepted: 23 May 2018 Published: 13 June 2018
Abstract
The adsorption of NH3 molecules on (SiO2)n (n = 2–7) clusters was explored using various theoretical methods. The stable structures, interaction energies, and bonding properties for the various methods were evaluated in detail. Reactivity analysis and optimization results showed that a single NH3 molecule preferentially adheres to the Si atom at the edge of the clusters. It was also observed that the energy gap and hardness of the complexes decreased with an increase in the number of NH3 molecules. Topological, electron localization function, and atoms-in-molecules analyses were performed to investigate the bonding characteristics of these complexes. In addition, the results of this study were compared with those obtained for a similar system (H2O molecules adsorbed onto SiO2 clusters), and the similarities and differences between the two systems were discussed.
References
[1] D. T. Griggs, Geophys. J. R. Astron. Soc. 1967, 14, 19.| Crossref | GoogleScholarGoogle Scholar |
[2] A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, G. Schnakenburg, Angew. Chem. Int. Ed. 2014, 53, 565.
| Crossref | GoogleScholarGoogle Scholar |
[3] D. R. Kinney, I. S. Chuang, G. E. Maciel, J. Am. Chem. Soc. 1993, 115, 6786.
| Crossref | GoogleScholarGoogle Scholar |
[4] I. S. Chuang, G. E. Maciel, J. Am. Chem. Soc. 1996, 118, 401.
| Crossref | GoogleScholarGoogle Scholar |
[5] A. J. Milling, K. Kendall, Langmuir 2000, 16, 5106.
| Crossref | GoogleScholarGoogle Scholar |
[6] L. T. Zhuravlev, Colloids Surf. A 2000, 173, 1.
| Crossref | GoogleScholarGoogle Scholar |
[7] V. A. Bakaev, W. A. Steele, J. Chem. Phys. 1999, 111, 9803.
| Crossref | GoogleScholarGoogle Scholar |
[8] T. R. Walsh, M. Wilson, A. P. Sutton, J. Chem. Phys. 2000, 113, 9191.
| Crossref | GoogleScholarGoogle Scholar |
[9] S. Iarlori, D. Ceresoli, M. Bernasconi, D. Donadio, M. Parrinello, J. Phys. Chem. B 2001, 105, 8007.
| Crossref | GoogleScholarGoogle Scholar |
[10] N. H. de Leeuw, F. M. Higgins, S. C. Parker, J. Phys. Chem. B 1999, 103, 1270.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. H. Du, H. P. Cheng, Int. J. Quantum Chem. 2003, 93, 1.
| Crossref | GoogleScholarGoogle Scholar |
[12] H. P. Cheng, J. Chem. Phys. 2002, 116, 9300.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. Zhi, G. Zhao, L. Guo, Q. Jing, Phys. Rev. B 2008, 77, 235435.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. Ambati, H. Saiyed, S. E. Rankin, Phys. Chem. Chem. Phys. 2012, 14, 6617.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
| Crossref | GoogleScholarGoogle Scholar |
[16] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
[18] J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 1996, 54, 16533.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01 2004 (Gaussian Inc.: Wallingford, CT).
[21] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 1987, 87, 5968.
| Crossref | GoogleScholarGoogle Scholar |
[23] W. S. Benedict, N. Gailar, E. K. Plyler, Can. J. Phys. 1957, 35, 1235.
| Crossref | GoogleScholarGoogle Scholar |
[24] H. M. Mould, W. C. Price, G. R. Wilkinson, Spectrochim. Acta 1959, 15, 313.
| Crossref | GoogleScholarGoogle Scholar |
[25] G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules 1966 (Van Nostrand: New York, NY).
[26] See p. 1 in: L. McClellan, Tables of Experimental Dipole Moments 1989 (W. H. Freeman and Co.: San Francisco, CA).
[27] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
| Crossref | GoogleScholarGoogle Scholar |
[28] D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397.
| Crossref | GoogleScholarGoogle Scholar |
[29] T. Lu, F. W. Chen, Wuli Huaxue Xuebao 2011, 27, 2786.
| Crossref | GoogleScholarGoogle Scholar |
[30] R. F. W. Bader, Atoms in Molecules: A Quantum Theory 1990 (Clarendon: Oxford).
[31] R. Fu, T. Lu, F. Chen, Wuli Huaxue Xuebao 2014, 30, 628.
| Crossref | GoogleScholarGoogle Scholar |
[32] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.
| Crossref | GoogleScholarGoogle Scholar |
[33] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
| Crossref | GoogleScholarGoogle Scholar |
[34] S. K. Nayak, B. K. Rao, S. N. Khanna, P. Jena, J. Chem. Phys. 1998, 109, 1245.
| Crossref | GoogleScholarGoogle Scholar |
[35] S. T. Bromley, M. A. Zwijnenburg, Th. Maschmeyer, Phys. Rev. Lett. 2003, 90, 035502.
| Crossref | GoogleScholarGoogle Scholar |
[36] Q. Sun, Q. Wang, P. Jena, Phys. Rev. Lett. 2004, 92, 039601.
| Crossref | GoogleScholarGoogle Scholar |
[37] I. Bandyopadhyay, C. M. Aikens, J. Phys. Chem. A 2011, 115, 868.
| Crossref | GoogleScholarGoogle Scholar |
[38] R. Catlow, S. T. Bromley, S. Hamad, M. Mora-Fonz, A. A. Sokol, S. M. Woodley, Phys. Chem. Chem. Phys. 2010, 12, 786.
| Crossref | GoogleScholarGoogle Scholar |
[39] J. S. Murray, P. Politzer, in Encyclopedia of Computational Chemistry (Ed. P. von R. Schleyer) 1998, pp. 912–920 (Wiley: Hoboken, NJ).
[40] J. S. Murray, P. Politzer, WIRES Comp. Mol. Sci. 2011, 1, 153.
| Crossref | GoogleScholarGoogle Scholar |
[41] T. Lu, F. Chen, J. Mol. Graph. Model. 2012, 38, 314.
| Crossref | GoogleScholarGoogle Scholar |
[42] P. K. Sajith, C. H. Suresh, Inorg. Chem. 2011, 50, 8085.
| Crossref | GoogleScholarGoogle Scholar |
[43] K. J. de Almeida, T. C. Ramalho, J. L. Neto, R. T. Santiago, V. C. Felicssimoa, H. A. Duarte, Organometallics 2013, 32, 989.
| Crossref | GoogleScholarGoogle Scholar |
[44] P. Li, W. Niu, T. Gao, RSC Adv. 2014, 4, 29806.
| Crossref | GoogleScholarGoogle Scholar |
[45] D. Cremer, E. Kraka, Angew. Chem. Int. Ed. Engl. 1984, 23, 627.
| Crossref | GoogleScholarGoogle Scholar |
[46] M. Palusiak, T. M. Krygowski, Chem. – Eur. J. 2007, 13, 7996.
| Crossref | GoogleScholarGoogle Scholar |
[47] P. Li, W. Niu, T. Gao, H. Wang, ChemPhysChem 2014, 15, 3078.
| Crossref | GoogleScholarGoogle Scholar |