Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Redox-State Dependent Spectroscopic Properties of Porous Organic Polymers Containing Furan, Thiophene, and Selenophene*

Carol Hua A , Stone Woo A , Aditya Rawal B , Floriana Tuna C , James M. Hook B , David Collison C and Deanna M. D’Alessandro A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

B NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia.

C School of Chemistry, University of Manchester, Manchester M13 9PL, UK.

D Corresponding author. Email: deanna.dalessandro@sydney.edu.au

Australian Journal of Chemistry 70(11) 1227-1234 https://doi.org/10.1071/CH17335
Submitted: 15 June 2017  Accepted: 27 September 2017   Published: 25 October 2017

Abstract

A series of electroactive triarylamine porous organic polymers (POPs) with furan, thiophene, and selenophene (POP-O, POP-S, and POP-Se) linkers have been synthesised and their electronic and spectroscopic properties investigated as a function of redox state. Solid state NMR provided insight into the structural features of the POPs, while in situ solid state Vis-NIR and electron paramagnetic resonance spectroelectrochemistry showed that the distinct redox states in POP-S could be reversibly accessed. The development of redox-active porous organic polymers with heterocyclic linkers affords their potential application as stimuli responsive materials in gas storage, catalysis, and as electrochromic materials.


References

[1]  Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Chem. Soc. Rev. 2013, 42, 8012.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyrtbjL&md5=fc0ad34b6dbe7f4bf58a75cf0fd122a4CAS |

[2]  H. A. Patel, S. Hyun Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz, A. Coskun, Nat. Commun. 2013, 4, 1357.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  W. Wang, M. Zhou, D. Yuan, J. Mater. Chem. A 2017, 5, 1334.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  O. K. Farha, A. M. Spokoyny, B. G. Hauser, Y.-S. Bae, S. E. Brown, R. Q. Snurr, C. A. Mirkin, J. T. Hupp, Chem. Mater. 2009, 21, 3033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFWrs70%3D&md5=76b316a91ca83e8c0406a34acbc0b7a7CAS |

[5]  Y. Zhang, S. N. Riduan, Chem. Soc. Rev. 2012, 41, 2083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWlsb8%3D&md5=65e60667472b9dc5d92d6019ec02ebebCAS |

[6]  P. Kaur, J. T. Hupp, S. T. Nguyen, ACS Catal. 2011, 1, 819.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVSjsbw%3D&md5=d01fe65dc82c7244678164417c00d604CAS |

[7]  J.-X. Jiang, C. Wang, A. Laybourn, T. Hasell, R. Clowes, Y. Z. Khimyak, J. Xiao, S. J. Higgins, D. J. Adams, A. I. Cooper, Angew. Chem. Int. Ed. 2011, 50, 1072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKntrs%3D&md5=96f924f6144d3f81e94930c1a5cf0aadCAS |

[8]  K. Zhang, D. Kopetzki, P. H. Seeberger, M. Antonietti, F. Vilela, Angew. Chem. Int. Ed. 2013, 52, 1432.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKgu7fK&md5=e173c85a4b6bfb18d8117c0a853c8472CAS |

[9]  C. Hua, A. Rawal, T. B. Faust, P. D. Southon, R. Babarao, J. M. Hook, D. M. D’Alessandro, J. Mater. Chem. A 2014, 2, 12466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKmu73K&md5=73fc23ad9730053a8f1b987a9c410519CAS |

[10]  C. Hua, B. Chan, A. Rawal, F. Tuna, D. Collison, J. M. Hook, D. M. D’Alessandro, J. Mater. Chem. C 2016, 4, 2535.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjtlKqu78%3D&md5=b470106a0605afcb5aa70e9c30019c5eCAS |

[11]  G. Das, T. Prakasam, S. Nuryyeva, D. S. Han, A. Abdel-Wahab, J.-C. Olsen, K. Polychronopoulou, C. Platas-Iglesias, F. Ravaux, M. Jouiad, A. Trabolsi, J. Mater. Chem. A 2016, 4, 15361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVKisLzM&md5=99d5ef566c35be2a30cbbcc58903e205CAS |

[12]  S. Amthor, B. Noller, C. Lambert, Chem. Phys. 2005, 316, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVGqtrc%3D&md5=47a94f9a4465e7bc174eb505c1922002CAS |

[13]  M. h. Chahma, J. B. Gilroy, R. G. Hicks, J. Mater. Chem. 2007, 17, 4768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12hsL3F&md5=f424329be6e2666986c716c65e80dd64CAS |

[14]  G. Nöll, M. Avola, M. Lynch, J. Daub, J. Phys. Chem. C 2007, 111, 3197.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  K. Idzik, J. Sołoducho, M. Łapkowski, S. Golba, Electrochim. Acta 2008, 53, 5665.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsV2lt7c%3D&md5=d5c5b46d0b006a301c004a142e0c85d9CAS |

[16]  X. Qian, Z.-Q. Zhu, H.-X. Sun, F. Ren, P. Mu, W. Liang, L. Chen, A. Li, ACS Appl. Mater. Interfaces 2016, 8, 21063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1equ7nJ&md5=b918eda75209764bb47a628b6179b2e4CAS |

[17]  P.-F. Li, T. B. Schon, D. S. Seferos, Angew. Chem. Int. Ed. 2015, 54, 9361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVensbvF&md5=1c50492497bdf1f538dbd0d0121ca5bfCAS |

[18]  M. J. Plater, T. Jackson, Tetrahedron 2003, 59, 4687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVegsb4%3D&md5=e645f0c1f9f82f65b0e89315a301a913CAS |

[19]  K. Yamamoto, M. Higuchi, K. Uchida, Y. Kojima, Macromolecules 2002, 35, 5782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVKksb4%3D&md5=ea41ddfb719d9ad43d7f1466fb680dbaCAS |

[20]  V. Lukeš, P. Rapta, K. Haubner, M. Rosenkranz, H. Hartmann, L. Dunsch, J. Phys. Chem. A 2013, 117, 6702.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  C.-J. Chen, Y.-C. Hu, G.-S. Liou, Polym. Chem. 2013, 4, 4162.
         | 1:CAS:528:DC%2BC3sXhtVCqtbnI&md5=a1ddd8e6ed99a9b9df4d720199ce76eaCAS |

[22]  P. Surawatanawong, A. K. Wójcik, S. Kiatisevi, J. Photochem. Photobiol. Chem. 2013, 253, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ensbs%3D&md5=467b0d09c6b24dc6897b357131787ec0CAS |

[23]  Y. Jiang, Y. Wang, J. Yang, J. Hua, B. Wang, S. Qian, H. Tian, J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 1830.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Ghsrg%3D&md5=b01504cf52f2b6d141cfaa185c227723CAS |

[24]  C. Ramalingan, I.-S. Lee, Y.-W. Kwak, Chem. Pharm. Bull. 2009, 57, 591.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvVylsb8%3D&md5=01122e9042a9279c6987a51ceaa69aa8CAS |

[25]  Y.-J. Hwang, T. Earmme, S. Subramaniyan, S. A. Jenekhe, Chem. Commun. 2014, 50, 10801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Khu7bF&md5=a9f9883273465f2157fbe043dd106f6fCAS |

[26]  D. R. Coulson, L. C. Satek, S. O. Grim, in Inorganic Syntheses (Ed. F. A. Cotton) 1972, pp. 121–124 (John Wiley & Sons, Inc.: Hoboken, NJ).

[27]  N. Niamnont, N. Kimpitak, K. Wongravee, P. Rashatasakhon, K. K. Baldridge, J. S. Siegel, M. Sukwattanasinitt, Chem. Commun. 2013, 49, 780.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVykt7fK&md5=2107c496ffd32a5a0f0e3c80e2a29813CAS |

[28]  P. M. Usov, C. Fabian, D. M. D’Alessandro, Chem. Commun. 2012, 48, 3945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVOlurs%3D&md5=ea3cabda65ac3b37afcd0106371c29afCAS |

[29]  P. R. Murray, D. Collison, S. Daff, N. Austin, R. Edge, B. W. Flynn, L. Jack, F. Leroux, E. J. L. McInnes, A. F. Murray, D. Sells, T. Stevenson, J. Wolowska, L. J. Yellowlees, J. Magn. Reson. 2011, 213, 206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2gs7jM&md5=7a13ee310bbaa9df2c7d3279c55b34e1CAS |