Structural, Spectroscopic, and Electrochemical Characterization of Semi-Conducting, Solvated [Pt(NH3)4](TCNQ)2·(DMF)2 and Non-Solvated [Pt(NH3)4](TCNQ)2
Jinzhen Lu A G , Ayman Nafady A B G , Brendan F. Abrahams C , Muhammad Abdulhamid A D , Bjorn Winther-Jensen E F , Alan M. Bond A H and Lisandra L. Martin A HA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B Current address: Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
C School of Chemistry, University of Melbourne, Melbourne, Vic. 3010, Australia.
D Current address: Department of Applied Physics, Chalmers University of Technology, Göteborg SE-412 96, Sweden.
E Materials Engineering, Monash University, Clayton, Vic. 3800, Australia.
F Current address: Department of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
G Joint first authors with an equal contribution.
H Corresponding authors. Email: alan.bond@monash.edu; lisa.martin@monash.edu
Australian Journal of Chemistry 70(9) 997-1005 https://doi.org/10.1071/CH17245
Submitted: 7 May 2017 Accepted: 16 June 2017 Published: 2 August 2017
Abstract
The demand for catalysts that are highly active and stable for electron-transfer reactions has been boosted by the discovery that [Pt(NH3)4](TCNQF4)2 (TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) is an efficient catalyst. In this work, we prepare and characterize the two related [Pt(NH3)4]2+ complexes, [Pt(NH3)4](TCNQ)2·(DMF)2 (1) and [Pt(NH3)4](TCNQ)2 (2). Reaction of [Pt(NH3)4](NO3)2 with LiTCNQ in a mixed solvent (methanol/dimethylformamide, 4 : 1 v/v) gives [Pt(NH3)4](TCNQ)2·(DMF)2 (1), whereas the same reaction in water affords [Pt(NH3)4](TCNQ)2 (2). 2 has been previously reported. Both 1 and 2 have now been characterized by single-crystal X-ray crystallography, Fourier-transform (FT)IR, Raman and UV-vis spectroscopy, and electrochemistry. Structurally, in 1, the TCNQ1− anions form infinite stacks with a separation between adjacent anions within the stack alternating between 3.12 and 3.42 Å. The solvated structure 1 differs from the non-solvated form 2 in that pairs of TCNQ1− anions are clearly displaced from each other. The conductivities of pressed pellets of 1 and 2 are both in the semi-conducting range at room temperature. 2 can be electrochemically synthesized by reduction of a TCNQ-modified electrode in contact with an aqueous solution of [Pt(NH3)4](NO3)2 via a nucleation growth mechanism. Interestingly, we discovered that 1 and 2 are not catalysts for the ferricyanide and thiosulfate reaction. Li+ and tetraalkylammonium salts of TCNQ1−/2− and TCNQF41−/2− were tested for potential catalytic activity towards ferricyanide and thiosulfate. Only TCNQF41−/2− salts were active, suggesting that the dianion redox level needs to be accessible for efficient catalytic activity and explaining why 1 and 2 are not good catalysts. Importantly, the origin of the catalytic activity of the highly active [Pt(NH3)4](TCNQF4)2 catalyst is now understood, enabling other families of catalysts to be developed for important electron-transfer reactions.
References
[1] T. E. Phillips, T. J. Kistenmacher, J. P. Ferraris, D. O. Cowan, J. Chem. Soc., Chem. Commun. 1973, 471.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXltF2gs7o%3D&md5=0ef3406c4c8efc2fe714da709a4925c6CAS |
[2] X. Qu, J. Lu, C. Zhao, J. F. Boas, B. Moubaraki, K. S. Murray, A. Siriwardana, A. M. Bond, L. L. Martin, Angew. Chem. Int. Ed. 2011, 50, 1589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslygs7s%3D&md5=56d0f088b40f7c3e710606284ea1f94eCAS |
[3] A. P. O’Mullane, A. K. Neufeld, A. R. Harris, A. M. Bond, Langmuir 2006, 22, 10499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFGjt7o%3D&md5=b33f09853ab574dfa7d4184ffffdbc01CAS |
[4] R. Jain, K. Kabir, J. B. Gilroy, K. A. R. Mitchell, K. C. Wong, R. G. Hicks, Nature 2007, 445, 291.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Kitw%3D%3D&md5=d8300821bb113248191411ad4074adacCAS |
[5] N. Lopez, H. Zhao, A. Ota, A. V. Prosvirin, E. W. Reinheimer, K. R. Dunbar, Adv. Mater. 2010, 22, 986.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislKmuro%3D&md5=e14438adbdc5b58247f34906c8580d56CAS |
[6] H. Miyasaka, T. Izawa, N. Takahashi, M. Yamashita, K. R. Dunbar, J. Am. Chem. Soc. 2006, 128, 11358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Khtbw%3D&md5=326ddf4566a00953a8db082d76222bc8CAS |
[7] K. Ueda, T. Sugimoto, S. Endo, N. Toyota, M. Kohama, K. Yamamoto, Y. Suenaga, H. Morimoto, T. Yamaguchi, M. Munakata, N. Hosoito, N. Kanehisa, Y. Shibamoto, Y. Kai, Chem. Phys. Lett. 1996, 261, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFWksr0%3D&md5=19816996b437cd597b04e397914b1ea3CAS |
[8] F. H. Herbstein, M. Kapon, Crystallogr. Rev. 2008, 14, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslyqt7c%3D&md5=7ac79c63e0d065ebe9ec9cd8544c1197CAS |
[9] J. Lu, X. Qu, G. Peleckis, F. J. Boas, M. A. Bond, L. L. Martin, J. Org. Chem. 2011, 76, 10078.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCgt73M&md5=aba48e07e5ff7457fe4b58fa62a80d4aCAS |
[10] G. J. Ashwell, V. E. Bartlett, D. D. Eley, S. C. Wallwork, M. R. Willis, Acta Crystallogr. Sect. B 1977, 33, 2602.
| Crossref | GoogleScholarGoogle Scholar |
[11] G. J. Ashwell, D. D. Eley, N. J. Drew, S. C. Wallwork, M. R. Willis, Acta Crystallogr. Sect. B 1977, 33, 2598.
| Crossref | GoogleScholarGoogle Scholar |
[12] G. J. Ashwell, S. C. Wallwork, S. R. Baker, P. I. Berthier, Acta Crystallogr. Sect. B 1975, 31, 1174.
| Crossref | GoogleScholarGoogle Scholar |
[13] G. J. Ashwell, D. D. Eley, R. J. Fleming, S. C. Wallwork, M. R. Willis, Acta Crystallogr. Sect. B 1976, 32, 2948.
| Crossref | GoogleScholarGoogle Scholar |
[14] G. J. Ashwell, D. D. Eley, A. Harper, A. C. Torrance, S. C. Wallwork, M. R. Willis, Acta Crystallogr. Sect. B 1977, 33, 2258.
| Crossref | GoogleScholarGoogle Scholar |
[15] G. J. Ashwell, D. D. Eley, S. C. Wallwork, M. R. Willis, G. D. Welch, J. Woodward, Acta Crystallogr. Sect. B 1977, 33, 2252.
| Crossref | GoogleScholarGoogle Scholar |
[16] G. J. Ashwell, D. D. Eley, M. R. Willis, Nature 1976, 259, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhtlCqtr0%3D&md5=fe08f814843d8ef09a29312d977d36cdCAS |
[17] K. Xiao, I. N. Ivanov, A. A. Puretzky, Z. Q. Liu, D. B. Geohegan, Adv. Mater. 2006, 18, 2184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xptlygsbk%3D&md5=1005a189cefa8b5cc4f8aeb596af0d62CAS |
[18] H. Liu, Q. Zhao, Y. Li, Y. Liu, F. Lu, J. Zhuang, S. Wang, L. Jiang, D. Zhu, D. Yu, L. Chi, J. Am. Chem. Soc. 2005, 127, 1120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlGmuw%3D%3D&md5=4e64c179fb3abdbf459e533cdf46b050CAS |
[19] R. Muller, J. Genoe, P. Heremans, Appl. Phys. Lett. 2006, 88, 88.
[20] H. Liu, S. Cui, Y. Guo, Y. Li, C. Huang, Z. Zuo, X. Yin, Y. Song, D. Zhu, J. Mater. Chem. 2009, 19, 1031.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOrtb4%3D&md5=ae8b48532e39294a124fe7c07ecccfddCAS |
[21] Y. L. Liu, Z. Y. Ji, Q. X. Tang, L. Jiang, H. X. Li, M. He, W. P. Hu, D. Q. Zhang, X. K. Wang, C. Wang, Y. Q. Liu, D. B. Zhu, Adv. Mater. 2005, 17, 2953.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1WmsQ%3D%3D&md5=2e837feb141fcbc8022986e4193a0c95CAS |
[22] M. Mahajan, S. K. Bhargava, A. P. O’Mullane, RSC Adv. 2013, 3, 4440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFersLs%3D&md5=7f2482d43c9d7bfd89969dfb359fb101CAS |
[23] D. D. La, R. Ramanathan, A. Rananaware, V. Bansal, S. V. Bhosale, RSC Adv. 2016, 6, 33931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xksl2nsb0%3D&md5=9fdc7c766aacba992e1893890a622a61CAS |
[24] D. Xue, Q.-Y. Lv, C.-N. Lin, S.-Z. Zhan, Polyhedron 2016, 117, 300.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xps1ams7g%3D&md5=5fc1d1bdc8c2df82beb14ccaeb42ded4CAS |
[25] Z. Zhang, J. Wang, D. Liu, W. Luo, M. Zhang, W. Jiang, Y. Zhu, ACS Appl. Mater. Interfaces 2016, 8, 30225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1GgurjF&md5=37e355d826d95c6a0d9fad4a95351077CAS |
[26] J. Lu, B. F. Abrahams, B. Winther-Jensen, L. L. Martin, A. M. Bond, ChemCatChem 2014, 6, 2345.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKmtb%2FP&md5=601c39c463e619f62b958b332e6e72b5CAS |
[27] H. Endres, H. J. Keller, W. Moroni, D. Nothe, Z. Naturforsch. B 1976, 31, 1322.
[28] H. Endres, H. J. Keller, W. Moroni, D. Nothe, V. Dong, Acta Crystallogr. Sect. B 1978, 34, 1703.
| Crossref | GoogleScholarGoogle Scholar |
[29] A. Nafady, A. M. Bond, A. Bilyk, A. R. Harris, A. I. Bhatt, A. P. O’Mullane, R. De Marco, J. Am. Chem. Soc. 2007, 129, 2369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlemtr4%3D&md5=8156c4d0e4ebbbfeab734d9953915e3eCAS |
[30] A. M. Bond, Broadening Electrochemical Horizons: Principles and Illustration of Voltammetric and Related Techniques 2002 (Oxford University Press: Oxford).
[31] H. Endres, H. J. Keller, W. Moroni, D. Nothe, V. Dong, Acta Crystallogr. Sect. B 1978, 34, 1703.
| Crossref | GoogleScholarGoogle Scholar |
[32] T. H. Le, J. Lu, A. M. Bond, L. L. Martin, Inorg. Chim. Acta 2013, 395, 252.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFOrtbc%3D&md5=bcb611b63f8b15a4bfbaea0de7d15a85CAS |
[33] S.-I. Terashita, K. Nazumi, Y. Ozaki, S. Takagi, J. Phys. Chem. 1995, 99, 3618.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFensrw%3D&md5=c24469a18f33cb8c9cc03f266c0fd4cbCAS |
[34] F. H. Herbstein, M. Kapon, Crystallogr. Rev. 2008, 14, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslyqt7c%3D&md5=7ac79c63e0d065ebe9ec9cd8544c1197CAS |
[35] P. G. Gucciardi, S. Trusso, C. Vasi, S. Patane, M. Allegrini, Phys. Chem. Chem. Phys. 2002, 4, 2747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVegtbY%3D&md5=0ba20118420fbf5709008eb26f69c9cfCAS |
[36] A. Nafady, A. P. O’Mullane, A. M. Bond, A. K. Neufeld, Chem. Mater. 2006, 18, 4375.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2ltLk%3D&md5=accefaf0083f86fbaa57556bbd8796f1CAS |
[37] A. L. Sutton, B. F. Abrahams, D. M. D’Alessandro, T. A. Hudson, R. Robson, P. M. Usov, CrystEngComm 2016, 18, 8906.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVWmtrfM&md5=fbb23d8f4b73078c1e8c662bb20022b7CAS |
[38] A. Nafady, A. M. Bond, Inorg. Chem. 2007, 46, 4128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVSmu7o%3D&md5=2571bf94a5ced1370676d2a1755f2612CAS |
[39] A. M. Bond, S. Fletcher, P. G. Symons, Analyst 1998, 123, 1891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVCju7k%3D&md5=ceda1433c1e60f38f5e7af28c986f1fdCAS |
[40] A. M. Bond, S. Fletcher, F. Marken, S. J. Shaw, P. G. Symons, J. Chem. Soc., Faraday Trans. 1996, 92, 3925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvVymsbk%3D&md5=2cc1064ab7830df1498c5828afe0900eCAS |
[41] M. Oyama, R. D. Webster, M. Suarez, F. Marken, R. G. Compton, S. Okazaki, J. Phys. Chem. B 1998, 102, 6588.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVGqs7c%3D&md5=18e96205604de9caf5f28af19db60376CAS |
[42] A. Nafady, N. J. Al-Qahtani, K. A. Al-Farhan, S. Bhargava, A. M. Bond, J. Solid State Electrochem. 2014, 18, 851.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1yqtrw%3D&md5=7664f00075fe08bd6485b47067cc1852CAS |
[43] A. Nafady, A. M. Bond, A. Bilyk, J. Phys. Chem. C 2008, 112, 6700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt12qtbc%3D&md5=8a7cf243c424c39ccff8eed12db3aa44CAS |
[44] A. Nafady, A. M. Bond, V. Qu, L. L. Martin, J. Solid State Electrochem. 2013, 17, 1609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFKgs78%3D&md5=c4f763dd6e0203766e12f786aebfb789CAS |
[45] A. Nafady, A. M. Bond, A. P. O’Mullane, Inorg. Chem. 2009, 48, 9258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqt7bN&md5=b90718f56c93535d08310eeefe66f888CAS |
[46] M. F. Suarez, A. M. Bond, R. G. Compton, J. Solid State Electrochem. 1999, 4, 24.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitFehs7s%3D&md5=24e2c1edcec4ac35cfa2d51eb5734f22CAS |
[47] S. Fletcher, C. S. Halliday, D. Gates, M. Westcott, T. Lwin, G. Nelson, J. Electroanal. Chem. 1983, 159, 267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlvVOntw%3D%3D&md5=bf8033149517543ed8237dec7bc5aeffCAS |
[48] M. F. Suarez, F. Marken, R. G. Compton, A. M. Bond, W. Miao, C. L. Raston, J. Phys. Chem. B 1999, 103, 5637.
| 1:CAS:528:DyaK1MXjvVWktLk%3D&md5=ffe40600c76683ccd243c9cb2bcbafc3CAS |
[49] A. K. Neufeld, I. Madsen, A. M. Bond, C. F. Hogan, Chem. Mater. 2003, 15, 3573.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVyqurc%3D&md5=d511fcce1695b0854992dfe623c240d3CAS |
[50] H. Oshio, E. Ino, T. Ito, Y. Maeda, Bull. Chem. Soc. Jpn. 1995, 68, 889.
| 1:CAS:528:DyaK2MXks12htLg%3D&md5=c3bf8a06c1dc97e7d807b933495e55acCAS |
[51] J. Lu, T. H. Le, D. A. K. Traore, M. Wilce, A. M. Bond, L. L. Martin, J. Org. Chem. 2012, 77, 10568.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1OltLrF&md5=10f777101cf95821afeee93937d7b544CAS |
[52] S. Shimomura, R. Matsuda, T. Tsujino, T. Kawamura, S. Kitagawa, J. Am. Chem. Soc. 2006, 128, 16416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yrtrjJ&md5=6ed0e57818b7d0453c5b4bea346dd8aeCAS |
[53] M. R. Suchanski, R. P. Van Duyne, J. Am. Chem. Soc. 1976, 98, 250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XpslWhsQ%3D%3D&md5=948417312a038feee50c4ab6301626d7CAS |
[54] M. Mahajan, S. K. Bhargava, A. P. O’Mullane, RSC Adv. 2013, 3, 4440.
| 1:CAS:528:DC%2BC3sXjsFersLs%3D&md5=7f2482d43c9d7bfd89969dfb359fb101CAS |
[55] D. S. Acker, R. J. Harder, W. R. Hertler, W. Mahler, L. R. Melby, R. E. Benson, W. E. Mochel, J. Am. Chem. Soc. 1960, 82, 6408.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXnsF2jsQ%3D%3D&md5=5cf070f3531b6ee2d29b1f9d071fefa6CAS |
[56] G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=933d4ded754510f3d6dd59e45c48aab3CAS |
[57] L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=e0ff15107f5b5db7053aa30bb6753041CAS |