Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Reactions of Trivalent Iodine Reagents with Classic Iridium and Rhodium Complexes*

Mohammad Albayer A and Jason L. Dutton A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic. 3086, Australia.

B Corresponding author. Email: j.dutton@latrobe.edu.au

Australian Journal of Chemistry 70(11) 1180-1187 https://doi.org/10.1071/CH17173
Submitted: 27 March 2017  Accepted: 7 July 2017   Published: 9 August 2017

Abstract

In this work, the reactions of iodine(iii) reagents (PhI(L)2: L = pyridine, acetate (OAc), triflate (OTf)) with iridium(i) and rhodium(i) complexes (Vaskas’s compound, Wilkinson’s catalyst, and bis[bis(diphenylphosphino)ethane]rhodium(i) triflate) are reported. In all cases, the reactions resulted in two-electron oxidation of the metal complexes. Mixtures of products were observed in the reactions of Iiii reagents with Vaska’s compound and Wilkinson’s catalyst via ligand exchange and anion scrambling. In the case of reacting Iiii reagents with chelating ligand-containing bis[bis(diphenylphosphino)ethane]rhodium(i) triflate, no scrambling was observed.


References

[1]  A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xit1aksrg%3D&md5=4eae2f4431ae4478d804edda36ee2415CAS |

[2]  A. J. Hickman, M. S. Sanford, Nature 2012, 484, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVers7o%3D&md5=0ee2fe36da54a5c896c133101f585eccCAS |

[3]  J. M. Racowski, A. R. Dick, M. S. Sanford, J. Am. Chem. Soc. 2009, 131, 10974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1aru78%3D&md5=b3ed387e5816624006fff685f869c526CAS |

[4]  N. R. Deprez, D. Kalyani, A. Krause, M. S. Sanford, J. Am. Chem. Soc. 2006, 128, 4972.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislOnsr4%3D&md5=de2ab484bd56f7109841d008164f568aCAS |

[5]  D. Kalyani, N. R. Deprez, L. V. Desai, M. S. Sanford, J. Am. Chem. Soc. 2005, 127, 7330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVeit78%3D&md5=8b01f3191d3dbdef50d3b9da42abc9c1CAS |

[6]  R. Corbo, D. C. Georgiou, D. J. D. Wilson, J. L. Dutton, Inorg. Chem. 2014, 53, 1690.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlslGhuw%3D%3D&md5=9302017c57f679779c953fcee382b7b3CAS |

[7]  A. R. Dick, M. S. Remy, J. W. Kampf, M. S. Sanford, Organometallics 2007, 26, 1365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslajur8%3D&md5=d54c50b0014113191d157557b2c10e9aCAS |

[8]  K. B. McMurtrey, J. M. Racowski, M. S. Sanford, Org. Lett. 2012, 14, 4094.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWhsLjE&md5=89f0fee11d3f63cb2bf722475d322ea7CAS |

[9]  J. M. Racowski, N. D. Ball, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18022.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGjt7vL&md5=adaa5f5f6b8f12de81288b7909e09d80CAS |

[10]  A. R. Dick, K. L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2004, 126, 2300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosFKktQ%3D%3D&md5=fc76c6ec34fc2ac95c59aabad8b6db0fCAS |

[11]  S. R. Whitfield, M. S. Sanford, J. Am. Chem. Soc. 2007, 129, 15142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWmu7vO&md5=d909d42926e78c30b2d9d2fed7a84370CAS |

[12]  R. Corbo, T. P. Pell, B. D. Stringer, C. F. Hogan, D. J. D. Wilson, P. J. Barnard, J. L. Dutton, J. Am. Chem. Soc. 2014, 136, 12415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlalu7fL&md5=f1e692aee391631a44b7754ac44decc5CAS |

[13]  R. Weiss, J. Seubert, J. Angew. Chem. Int. Ed. Engl. 1994, 33, 891.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  N. S. Pirkuliyev, V. K. Brel, V. V. Zhdankin, N. S. Zefirov, Russ. J. Org. Chem. 2002, 38, 1224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVKnurk%3D&md5=bad26f268b95efa83ed6d11a1a5614a2CAS |

[15]  E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, Science 2011, 334, 639.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7vL&md5=b8d22079ce17c11f2312263fb2f8a518CAS |

[16]  T. P. Pell, S. A. Couchman, S. Ibrahim, D. J. D. Wilson, B. J. Smith, P. J. Barnard, J. L. Dutton, Inorg. Chem. 2012, 51, 13034.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Kntb3L&md5=8bdd19b2d9d6cd61a1fa6f5a11474a7aCAS |

[17]  F. C. Sousa e Silva, A. F. Tierno, S. E. Wengryniuk, Molecules 2017, 22, 780.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  J. P. Collman, C. T. Sears, M. Kubota, A. Davison, E. T. Shawl, J. R. Sowa, R. J. Angelici, Inorg. Synth. 1990, 28, 92.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhsFGqtrg%3D&md5=458b17eb53774915b407590d24130f92CAS |

[19]  J. A. Osborn, G. Wilkinson, J. J. Mrowca, Inorg. Synth. 1990, 28, 77.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXit1Sjt7c%3D&md5=faabb6cf50c1b654ff020f2779eed77bCAS |

[20]  A. J. Kunin, E. J. Nanni, R. Eisenberg, Inorg. Chem. 1985, 24, 1852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitlSrsL0%3D&md5=0f971e25857ed1c586d0866b7a630881CAS |

[21]  M. Hofer, C. Nevado, Eur. J. Inorg. Chem. 2012, 1338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaltLfO&md5=5f1eb879da8afcd278bb8af037941662CAS |

[22]  M. Hofer, C. Nevado, Tetrahedron 2013, 69, 5751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlGnsLs%3D&md5=d2a5ca3269e16d852ddd29612ede5631CAS |

[23]  M. A. Bennett, D. L. Milner, J. Am. Chem. Soc. 1969, 91, 6983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhvVShtQ%3D%3D&md5=b213c291383ff553e1171bcba1f99509CAS |

[24]  E. Krawczyk, A. Skowrońska, J. Michalski, J. Chem. Soc., Dalton Trans. 2002, 4471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFKlsLw%3D&md5=855777b2f8886aed391f330aefa14acdCAS |

[25]  M. Ito, C. Ogawa, N. Yamaoka, H. Fujioka, T. Dohi, Y. Kita, Molecules 2010, 15, 1918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFegtrc%3D&md5=c22551cc8446888f83a797b9e6303df9CAS |

[26]  T. Dohi, M. Ito, K. Morimoto, Y. Minamitsuji, N. Takenage, Y. Kita, Chem. Commun. 2007, 4152.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFenur%2FP&md5=fde1c4c127d629d0c99789f8319cf272CAS |

[27]  S. Egalahewa, M. Albayer, A. Aprile, J. L. Dutton, Inorg. Chem. 2017, 56, 1282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtFOrsL4%3D&md5=9fa077a4bbb4300ce4c7a799cccd0177CAS |

[28]  A. Aprile, K. J. Iversen, D. J. D. Wilson, J. L. Dutton, Inorg. Chem. 2015, 54, 4934.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsVeitb8%3D&md5=d35f8d44d3d453c2857ae6baca61431dCAS |

[29]  U. Farid, T. Wirth, Angew. Chem. Int. Ed. 2012, 51, 3462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ymt74%3D&md5=dbd0d902ef5fc99f09266bc570df3f6fCAS |

[30]  K. E. Fairfull-Smith, I. D. Jenkins, W. A. Loughlin, Org. Biomol. Chem. 2004, 2, 1979.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1ertLk%3D&md5=a8d8b7a4c094f737ec5c14bf7f45ca40CAS |

[31]  K. E. Elson, I. D. Jenkins, W. A. Loughlin, Aust. J. Chem. 2004, 57, 371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVKhs7g%3D&md5=3cef190c766b66807babe916711b6ef9CAS |