A Simple and Efficient Diversity-Oriented Synthesis of New Substituted 3-(Arylamino)-6,7-dihydro-1H-indazol-4(5H)-ones by a KOH-Assisted One-Pot Reaction
Mehdi Rimaz A C , Behzad Khalili B C , Golaleh Khatyal A , Hossein Mousavi A and Farkhondeh Aali AA Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran.
B Department of Chemistry, Faculty of Sciences, University of Guilan, PO Box 41335-1914, Rasht, Iran.
C Corresponding authors. Email: rimaz.mehdi@gmail.com; b.khalili@guilan.ac.ir
Australian Journal of Chemistry 70(12) 1274-1284 https://doi.org/10.1071/CH17146
Submitted: 9 March 2017 Accepted: 5 July 2017 Published: 8 August 2017
Abstract
A novel, simple, and straightforward combinatorial method for the synthesis of new substituted 3-(arylamino)-6,7-dihydro-1H-indazol-4(5H)-one derivatives has been developed. The synthesis was achieved via a one-pot three-component reaction of aromatic isothiocyanates, substituted 1,3-cyclohexanediones, and hydrazine hydrate in dimethyl sulfoxide as a polar aprotic solvent. This methodology has the advantages of mild reaction conditions, good to excellent yields, easily available starting materials, operational simplicity, and easy workup. This chemistry provides an efficient synthetic strategy to diversity-oriented construction of the 3-arylaminoindazole skeleton.
References
[1] (a) S. Kumari, M. Rajeswari, J. M. Khurana, Aust. J. Chem. 2016, 69, 1049.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVOitrjO&md5=91e5aae0e9d4308fb83779eccb40a64cCAS |
(b) H. Singh, J. Sindhu, J. M. Khurana, C. Sharma, K. R. Aneja, Aust. J. Chem. 2013, 66, 1088.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Dömling, Chem. Rev. 2006, 106, 17.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Dömling, W. Wang, K. Wang, Chem. Rev. 2012, 112, 3083.
| Crossref | GoogleScholarGoogle Scholar |
(e) N. Azizi, M. Edrisi, Res. Chem. Intermed. 2017, 43, 379.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. Golchin, M. H. Mosslemin, A. Yazdani-Elah-Abadi, N. Shams, Res. Chem. Intermed. 2017, 43, 1735.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Ghandi, S. Rahimi, N. Zarezadeh, J. Heterocycl. Chem. 2017, 54, 102.
| Crossref | GoogleScholarGoogle Scholar |
(h) J.-B. Feng, X.-F. Wu, J. Heterocycl. Chem. 2017, 54, 794.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) S. Fustero, M. Sánchez-roselló, P. Barrio, A. Simón-Fuentes, Chem. Rev. 2011, 111, 6984.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsF2jtL8%3D&md5=c198f19eedc7da4d01a3b9775dc4fc4aCAS |
(b) M. Abass, E. S. Othman, Res. Chem. Intermed. 2015, 41, 117.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. S. Al-bogami, Res. Chem. Intermed. 2015, 41, 93.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Mohana Roopan, S. M. Patil, J. Palaniraja, Res. Chem. Intermed. 2016, 42, 2749.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. K. Tonk, S. Bawa, G. Chawla, G. S. Deora, S. Kumar, V. Rathore, N. Mulakayala, A. Rajaram, A. M. Kalle, O. Afzal, Eur. J. Med. Chem. 2012, 57, 176.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. Sharma, M. Gupta, M. Gupta, R. Gupta, Aust. J. Chem. 2016, 69, 230.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Rimaz, H. Mousavi, M. Behnam, B. Khalili, Curr. Chem. Lett. 2016, 5, 145.
| Crossref | GoogleScholarGoogle Scholar |
(h) S. K. Mahato, J. Vinayagam, S. Dey, A. K. Timiri, S. Chatterjee, P. Jaisankar, Aust. J. Chem. 2013, 66, 241.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. Shiri, A. Nejatinejad-Arani, Z. Faghihi, J. Heterocycl. Chem. 2017, 54, 131.
| Crossref | GoogleScholarGoogle Scholar |
(j) Y. Wang, J. Xu, M.-M. Zhang, X.-S. Wang, J. Heterocycl. Chem. 2017, 54, 248.
| Crossref | GoogleScholarGoogle Scholar |
(k) M. A. Gouda, J. Heterocycl. Chem. 2016, 53, 356.
| Crossref | GoogleScholarGoogle Scholar |
(l) M. Ding, H. Guo, J. Heterocycl. Chem. 2016, 53, 2061.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) D. D. Gaikwad, A. D. Chapolikar, C. G. Devkate, K. D. Warad, A. P. Tayade, R. P. Pawar, A. J. Domb, Eur. J. Med. Chem. 2015, 90, 707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVWhsLjM&md5=0b5cf9e7a4b7c34e120a9fada9d86988CAS |
(b) A. Thangadurai, M. Minu, S. Wakode, S. Agrawal, B. Narasimhan, Med. Chem. Res. 2012, 21, 1509.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. A. S. Ali, B. A. Dar, V. Pradhan, M. Farooqui, Mini Rev. Med. Chem. 2013, 13, 1792.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Hou, C. Cai, G. Yu, Synlett 2016, 27, 773.
[4] H.-C. Zhang, C. K. Derian, D. F. McComsey, K. B. White, H. Ye, L. R. Hecker, J. Li, M. F. Addo, D. Croll, A. J. Eckardt, C. E. Smith, Q. Li, W.-M. Cheung, B. R. Conway, S. Emanuel, K. T. Demarest, P. Andrade-Gordon, B. P. Damiano, B. E. Maryanoff, J. Med. Chem. 2005, 48, 1725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslensrk%3D&md5=cd0b7afc10a60e34ce25c7dcb1377300CAS |
[5] R. J. Steffan, E. Matelan, M. A. Ashwell, W. J. Moore, W. R. Solvibile, E. Trybulski, C. C. Chadwick, S. Chippari, T. Kenny, A. Eckert, L. Borges-Marcucci, J. C. Keith, Z. Xu, L. Mosyak, D. C. Harnish, J. Med. Chem. 2004, 47, 6435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslegsbg%3D&md5=5464a520ee982b911443899be1de3b5bCAS |
[6] L.-G. Huang, M.-L. Shih, H.-S. Chen, S.-L. Pan, C.-M. Teng, F.-Y. Lee, S.-C. Kuo, Bioorg. Med. Chem. 2006, 14, 528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSiurvJ&md5=b39d8b1c899cbb431d73836627d0003bCAS |
[7] L. Bouissane, S. El Kazzouli, S. Léonce, B. Pfeiffer, E. M. Rakib, M. Khouili, G. Guillaumet, Bioorg. Med. Chem. 2006, 14, 1078.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFKrtA%3D%3D&md5=34e69f10bcc7b64d1ab6cf87f61d95dcCAS |
[8] L. M. Blair, J. Sperry, J. Nat. Prod. 2013, 76, 794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXls12ksbg%3D&md5=51d197058b09aacaff62a731daba8309CAS |
[9] S. Atta-ur-Rahman, C.-h. Malik, J. He, Clardy, Tetrahedron Lett. 1985, 26, 2759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltF2qsLg%3D&md5=aad4f44375eff2bb4dfe0777297ed01cCAS |
[10] S. Atta-ur-Rahman, S. S. Malik, M. I. Hasan, C.-Z. Choudhary, J. Ni, Clardy, Tetrahedron Lett. 1995, 36, 1993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslKqtLw%3D&md5=8e70414c7ea481792d9a61498e3c6d36CAS |
[11] Y.-M. Liu, J.-S. Yang, Q.-H. Liu, Chem. Pharm. Bull. 2004, 52, 454.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtlKqurs%3D&md5=034e0aa76a68060ef7520d7df04cf113CAS |
[12] (a) M. Rimaz, H. Mousavi, Turk. J. Chem. 2013, 37, 252.
| 1:CAS:528:DC%2BC3sXht1Wgt7zF&md5=77c18f21b956233ca81d29c5d4d0350aCAS |
(b) M. Rimaz, H. Rabiei, B. Khalili, R. H. Prager, Aust. J. Chem. 2014, 67, 283.
(c) M. Rimaz, H. Mousavi, P. Keshavarz, B. Khalili, Curr. Chem. Lett. 2015, 4, 159.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Rimaz, Aust. J. Chem. 2015, 68, 1529.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Rimaz, Z. Jalalian, H. Mousavi, R. H. Prager, Tetrahedron Lett. 2016, 57, 105.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. Rimaz, J. Khalafy, H. Mousavi, Res. Chem. Intermed. 2016, 42, 8185.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Rimaz, F. Aali, Chin. J. Catal. 2016, 37, 517.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. Rimaz, F. Aali, B. Khalili, R. H. Prager, Aust. J. Chem. 2017, 70, 660.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. Rimaz, H. Mousavi, L. Nikpey, B. Khalili, Res. Chem. Intermed. 2017, 43, 3925.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. Süsse, S. Johne, Adv. Synth. Catal. 1986, 328, 635.