Preclinical Imaging of siRNA Delivery
Nicholas Fletcher A , Aditya Ardana A and Kristofer J. Thurecht A B CA Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia.
B ARC Centre of Excellence in Convergent Bio-Nano Science and Technology.
C Corresponding author. Email: k.thurecht@uq.edu.au
Australian Journal of Chemistry 69(10) 1073-1077 https://doi.org/10.1071/CH16079
Submitted: 9 February 2016 Accepted: 5 April 2016 Published: 9 May 2016
Abstract
Small interfering RNA (siRNA) is emerging as a class of therapeutic with extremely high potential, particularly in the field of oncology. Despite this growing interest, further understanding of how siRNA behaves in vivo is still required before significant uptake into clinical application. To this end, many molecular imaging modalities have been utilised to gain a better understanding of the biodistribution and pharmacokinetics of administered siRNA and delivery vehicles. This highlight aims to provide an overview of the current state of the field for preclinical imaging of siRNA delivery.
References
[1] K. A. Whitehead, R. Langer, D. G. Anderson, Nat. Rev. Drug Discov. 2009, 8, 129.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOqt70%3D&md5=8700695c195766563c19b63a92180d86CAS | 19180106PubMed |
[2] R. Kanasty, J. R. Dorkin, A. Vegas, D. Anderson, Nat. Mater. 2013, 12, 967.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Grt7rM&md5=8b844f018bd7460e6a4a14a5109f9b9eCAS | 24150415PubMed |
[3] A. Ardana, A. K. Whittaker, N. A. J. McMillan, K. J. Thurecht, J. Chem. Technol. Biotechnol. 2015, 90, 1196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFWjur%2FO&md5=56c24268ba443039dc496e46c397fc5dCAS |
[4] Z.-Y. Chen, Y.-X. Wang, Y. Lin, J.-S. Zhang, F. Yang, Q.-L. Zhou, Y.-Y. Liao, Biomed. Res. Int. 2014, 2014, 12.
[5] D. A. Mankoff, J. Nucl. Med. 2007, 48, 18N.
| 17536102PubMed |
[6] N. R. B. Boase, I. Blakey, K. J. Thurecht, Polym. Chem. 2012, 3, 1384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1aqsLo%3D&md5=ad0dededea852720a857749226b7ab62CAS |
[7] A. V. Fuchs, A. C. Gemmell, K. J. Thurecht, Polym. Chem. 2015, 6, 868.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFCqsr%2FP&md5=9de58d50a83dce29c0714b7811a8ea18CAS |
[8] M. L. James, S. S. Gambhir, Physiol. Rev. 2012, 92, 897.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptF2kuro%3D&md5=126325ef8cc6398b1c109943c3dfda7eCAS | 22535898PubMed |
[9] F. Leuschner, P. Dutta, R. Gorbatov, T. I. Novobrantseva, J. S. Donahoe, G. Courties, K. M. Lee, J. I. Kim, J. F. Markmann, B. Marinelli, P. Panizzi, W. W. Lee, Y. Iwamoto, S. Milstein, H. Epstein-Barash, W. Cantley, J. Wong, V. Cortez-Retamozo, A. Newton, K. Love, P. Libby, M. J. Pittet, F. K. Swirski, V. Koteliansky, R. Langer, R. Weissleder, D. G. Anderson, M. Nahrendorf, Nat. Biotechnol. 2011, 29, 1005.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12hsrrN&md5=05b42c65d407c0437105bb698b8af5d1CAS | 21983520PubMed |
[10] Y. Y. Huang, X. X. Wang, W. Y. Huang, Q. Cheng, S. Q. Zheng, S. T. Guo, H. Q. Cao, X. J. Liang, Q. Du, Z. C. Liang, Sci. Rep. 2015, 5, 15.
[11] F. Pittella, H. Cabral, Y. Maeda, P. Mi, S. Watanabe, H. Takemoto, H. J. Kim, N. Nishiyama, K. Miyata, K. Kataoka, J. Control. Release 2014, 178, 18.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1GntLo%3D&md5=3f4f7c43e856b49bc58864ecac626d42CAS | 24440662PubMed |
[12] T. Wang, M. P. Gantier, D. Xiang, A. G. Bean, M. Bruce, S.-F. Zhou, M. Khasraw, A. Ward, L. Wang, M. Q. Wei, H. AlShamaileh, L. Chen, X. She, J. Lin, L. Kong, S. Shigdar, W. Duan, Theranostics 2015, 5, 1456.
| Crossref | GoogleScholarGoogle Scholar | 26681989PubMed |
[13] J. L. Kovar, M. A. Simpson, A. Schutz-Geschwender, D. M. Olive, Anal. Biochem. 2007, 367, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVOisr4%3D&md5=92e90bb132bd153b58f8a64adc26a44dCAS | 17521598PubMed |
[14] Y. Huang, J. Hong, S. Zheng, Y. Ding, S. Guo, H. Zhang, X. Zhang, Q. Du, Z. Liang, Mol. Ther. 2011, 19, 381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyru7bM&md5=de06a1f369e6629470c0d66873a4dd4fCAS | 21119623PubMed |
[15] O. Taratula, A. Kuzmov, M. Shah, O. B. Garbuzenko, T. Minko, J. Control. Release 2013, 171, 349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFWku7Y%3D&md5=56cf389198da5de2a8aba1f94f6371d6CAS | 23648833PubMed |
[16] M. S. Huh, S. Y. Lee, S. Park, S. Lee, H. Chung, S. Lee, Y. Choi, Y.-K. Oh, J. H. Park, S. Y. Jeong, K. Choi, K. Kim, I. C. Kwon, J. Control. Release 2010, 144, 134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslCrtLg%3D&md5=a4d8b68b648bab1ef3fa69e220f6383aCAS | 20184928PubMed |
[17] A. M. Grabowska, R. Kircheis, R. Kumari, P. Clarke, A. McKenzie, J. Hughes, C. Mayne, A. Desai, L. Sasso, S. A. Watson, C. Alexander, Biomater. Sci. 2015, 3, 1439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVKgt7nJ&md5=ea87e07808d015e65561bb5958c06903CAS | 26351701PubMed |
[18] C. A. Maguire, M. S. Bovenberg, M. H. W. Crommentuijn, J. M. Niers, M. Kerami, J. Teng, M. Sena-Esteves, C. E. Badr, B. A. Tannous, Mol. Ther. Nucleic Acids 2013, 2, e99.
| Crossref | GoogleScholarGoogle Scholar | 23778500PubMed |
[19] M. Shen, F. M. Gong, P. F. Pang, K. S. Zhu, X. C. Meng, C. Wu, J. Wang, H. Shan, X. T. Shuai, Int. J. Nanomedicine 2012, 7, 3319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVakur3O&md5=6dfc37cde398edc678a992965a54e08bCAS | 22802690PubMed |
[20] J. Wang, L. L. Ren, J. G. Li, J. S. Huang, D. Cheng, X. T. Shuai, RSC Adv. 2015, 5, 21103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivVSqtbg%3D&md5=a497fca2b09e8ec5f651af37369ec5e4CAS |
[21] Y. T. Chen, W. W. Wang, G. D. Lian, C. C. Qian, L. Y. Wang, L. J. Zeng, C. D. Liao, B. L. Liang, B. Huang, K. H. Huang, X. T. Shuai, Int. J. Nanomedicine 2012, 7, 359.
| 1:CAS:528:DC%2BC38XivFaksb8%3D&md5=0f2c2dbbee524ec303379880c2d3969bCAS |
[22] G. Lin, W. C. Zhu, L. Yang, J. Wu, B. B. Lin, Y. Xu, Z. Z. Cheng, C. C. Xia, Q. Y. Gong, B. Song, H. Ai, Biomaterials 2014, 35, 9495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKgsLzE&md5=506d52a4ed762083d26e6dc3d99abcd6CAS | 25155545PubMed |
[23] Z. Medarova, W. Pham, C. Farrar, V. Petkova, A. Moore, Nat. Med. 2007, 13, 372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKkurk%3D&md5=848dafab88f13de5a4366e72e3e340daCAS | 17322898PubMed |
[24] M. Kumar, M. Yigit, G. Dai, A. Moore, Z. Medarova, Cancer Res. 2010, 70, 7553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1akt7nK&md5=1a36a77fa13d574fcb66baa342d94c54CAS | 20702603PubMed |
[25] G. D. Kenny, N. Kamaly, T. L. Kalber, L. P. Brody, M. Sahuri, E. Shamsaei, A. D. Miller, J. D. Bell, J. Control. Release 2011, 149, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVyktg%3D%3D&md5=4e03ef53d14cc94ed0647bb6dcd2a0b7CAS | 20888381PubMed |
[26] C. Li, M.-F. Penet, F. Wildes, T. Takagi, Z. Chen, P. T. Winnard, D. Artemov, Z. M. Bhujwalla, ACS Nano 2010, 4, 6707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWitbbP&md5=7c6226eb7e1887f967300ddeb14133f4CAS | 20958072PubMed |
[27] M. Liu, R. F. Wang, C. L. Zhang, P. Yan, M. M. Yu, L. J. Di, H. J. Liu, F. Q. Guo, J. Nucl. Med. 2007, 48, 2028.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFSmsA%3D%3D&md5=27317bffce6bcd369f59886a50ab463fCAS | 18006621PubMed |
[28] L. Kang, R. F. Wang, P. Yan, M. Liu, C. L. Zhang, M. M. Yu, Y. G. Cui, X. J. Xu, J. Nucl. Med. 2010, 51, 978.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosl2ksbk%3D&md5=7f6391fc0a6f31703196e4f4d8054366CAS | 20484428PubMed |
[29] O. M. Merkel, D. Librizzi, A. Pfestroff, T. Schurrat, M. Béhé, T. Kissel, Bioconjug. Chem. 2009, 20, 174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFaisrrK&md5=64c7e9876e6668049968e061c33c2ebcCAS | 19093855PubMed |
[30] O. M. Merkel, D. Librizzi, A. Pfestroff, T. Schurrat, K. Buyens, N. N. Sanders, S. C. De Smedt, M. Béhé, T. Kissel, J. Control. Release 2009, 138, 148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Cnsr8%3D&md5=db65ff783d30cb048731c29bdf062949CAS | 19463870PubMed |
[31] B. Naeye, H. Deschout, V. Caveliers, B. Descamps, K. Braeckmans, C. Vanhove, J. Demeester, T. Lahoutte, S. C. De Smedt, K. Raemdonck, Biomaterials 2013, 34, 2350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKnsrrF&md5=13c5ec7675f730d41f4654bc132b21c0CAS | 23261216PubMed |
[32] W. Lu, G. D. Zhang, R. Zhang, L. G. Flores, Q. Huang, J. G. Gelovani, C. Li, Cancer Res. 2010, 70, 3177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslShtL4%3D&md5=2837b6bceaca1fb0640bae2702952a1eCAS | 20388791PubMed |
[33] D. W. Bartlett, H. Su, I. J. Hildebrandt, W. A. Weber, M. E. Davis, Proc. Natl. Acad. Sci. USA 2007, 104, 15549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFajtbrI&md5=1a8a91181009f4e3882ab6338610b85cCAS | 17875985PubMed |
[34] S. R. Mudd, V. S. Trubetskoy, A. V. Blokhin, J. P. Weichert, J. A. Wolff, Bioconjug. Chem. 2010, 21, 1183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVantL8%3D&md5=d690c4072c9ddcd0060d27c347a2227aCAS | 20552976PubMed |
[35] T. Viel, R. Boisgard, B. Kuhnast, B. Jego, K. Siquier-Pernet, F. Hinnen, F. Dolle, B. Tavitian, Oligonucleotides 2008, 18, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWlsbfK&md5=b83186bbb7fb96ad71a0fef3bcab16e3CAS | 18729822PubMed |
[36] K. Hatanaka, T. Asai, H. Koide, E. Kenjo, T. Tsuzuku, N. Harada, H. Tsukada, N. Oku, Bioconjug. Chem. 2010, 21, 756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVOgtb8%3D&md5=1869b55917d7aa251985fff77d45630eCAS | 20210335PubMed |
[37] E. Kenjo, T. Asai, N. Yonenaga, H. Ando, T. Ishii, K. Hatanaka, K. Shimizu, Y. Urita, T. Dewa, M. Nango, H. Tsukada, N. Oku, Biol. Pharm. Bull. 2013, 36, 287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFSqsbY%3D&md5=15ace74b22440c38936016cb3c20e8abCAS | 23370357PubMed |