Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Anticancer Evaluation of Tris(triazolyl)triazine Derivatives Generated via Click Chemistry

Tamer El Malah A B E , Hany F. Nour B C , A. A. Nayl A , R. A. Elkhashab A , Farouk M. E. Abdel-Megeid B and Mamdouh M. Ali D
+ Author Affiliations
- Author Affiliations

A Chemistry Department, College of Science, Aljouf University, Skaka 2014, Saudi Arabia.

B Photochemistry Department, National Research Centre, 33 El Buhouth Street, PO Box 12622, Dokki, Giza, Egypt.

C School of Pharmaceutical Science and Technology, Institute for Molecular Design, Tianjin University, Tianjin 300072, China.

D Biochemistry Department, Division of Genetic Engineering and Biotechnology, 33 El Buhouth Street, PO Box 12622, Dokki, Giza, Egypt.

E Corresponding author. Email: tmara_nrc3000@yahoo.com

Australian Journal of Chemistry 69(8) 905-910 https://doi.org/10.1071/CH16006
Submitted: 12 January 2016  Accepted: 26 February 2016   Published: 1 April 2016

Abstract

Click chemistry has been utilised for the preparation of new tris(triazolyl)triazines containing aliphatic and polar side chains through coupling of 2,4,6-triethynyl-[1,3,5]triazines, which possess free terminal alkyne moieties with substituted aromatic azides. The cytotoxic activity and in vitro anticancer potential of the newly synthesised compounds have been evaluated against seven human cancer cell lines including liver HepG2, breast MCF-7, lung A549, acute myeloid leukemia HL-60, colon HCT116, and prostate PC3 cancer cell lines in addition to human normal melanocyte, HFB4. The results revealed that all the compounds did not exhibit any activity against A549, HL-60, and PC3. However compound G2 was effective against MCF-7 and HepG2 cancer cell lines. On the other hand, compound G1a exhibited higher potency against MCF-7 and HepG2 cells with no toxicity on normal cells in comparison with the standard drug doxorubicin.


References

[1]  H. Varmus, Science 2006, 312, 1162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVOitbs%3D&md5=3212a7e52e384622f31b41faa9d90ac1CAS | 16728627PubMed |

[2]  World Health Organization, Fact Sheet N°297 2015. Available at: http://www.who.int/mediacentre/factsheets/fs297/en/

[3]  K. S. Anseth, H. A. Klok, Biomacromolecules 2016, 17, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XkslSisQ%3D%3D&md5=5820b636971d9b30d37596f7b9cd96b5CAS | 26750314PubMed |

[4]  J. E. Hein, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Ggu78%3D&md5=3f10c8f9cb14eaa5f8dc07365a13aaa2CAS | 20309487PubMed |

[5]  L. Piot, R. M. Meudtner, T. El Malah, S. Hecht, P. Samorì, Chem. – Eur. J. 2009, 15, 4788.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVGrtLc%3D&md5=21a5b2234b34345ce5799856b5ad0767CAS | 19322772PubMed |

[6]  D. Zornik, R. M. Meudtner, T. El Malah, C. M. Thiele, S. Hecht, Chem. – Eur. J. 2011, 17, 1473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKrtbk%3D&md5=8e17b2379883ea53136bba8af2a94a93CAS | 21268150PubMed |

[7]  R. Kumar, M. S. Yar, S. Chaturvedi, A. Srivastava, Int. J. Pharm. Tech. Res. 2013, 5, 1844.
         | 1:CAS:528:DC%2BC2cXhtlOhtbzF&md5=b91aec636bb949c100f7442443e8e60fCAS |

[8]  O. A. Abdou, A. A. Nadia, T. E. Tamer, R. M. Huda, Int. J. Adv. Res. 2013, 1, 729.

[9]  R. G. Lima-Neto, N. N. Cavalcante, R. M. Srivastava, F. J. Mendonça, A. G. Wanderley, R. P. Neves, J. V. dos Anjos, Molecules 2012, 17, 5882.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFGlurk%3D&md5=605804dec23f92b38d02db1bc84badd0CAS | 22592091PubMed |

[10]  D. Pereira, P. Fernandes, Bioorg. Med. Chem. Lett. 2011, 21, 510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SqsbnM&md5=cc628ca768b746e89d87b92d42f2e28eCAS | 21084187PubMed |

[11]  P. Joshia, M. Tripathia, D. S. Rawata, Indian J. Chem. 2014, 53, 311.

[12]  P. Singla, V. Luxami, K. Paul, Bioorg. Med. Chem. 2015, 23, 1691.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktFOkt7k%3D&md5=6724f6c6aafc6b609d18b5f5ece229e1CAS | 25792141PubMed |

[13]  S. Manohar, S. I. Khan, D. S. Rawat, Chem. Biol. Drug Des. 2011, 78, 124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVamtLY%3D&md5=f6582ff367e8eaa7f3354a683a9a6c2eCAS | 21457474PubMed |

[14]  A. Solankee, K. Kapadia, A. Ćirić, M. Soković, I. Doytchinova, A. Geronikaki, Eur. J. Med. Chem. 2010, 45, 510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Siuw%3D%3D&md5=007e5826325c97f99a2eb2b45b1bfcb4CAS | 19926364PubMed |

[15]  R. Kumar, M. S. Yar, S. Chaturvedi, A. Srivastava, Int. J. Pharm. Tech. Res. 2013, 5, 1844.
         | 1:CAS:528:DC%2BC2cXhtlOhtbzF&md5=b91aec636bb949c100f7442443e8e60fCAS |

[16]  A. Cadeddu, A. Ciesielski, T. El Malah, S. Hecht, P. Samorì, Chem. Commun. 2011, 47, 10578.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyqtL%2FF&md5=387bf01f7821421afab65f481a7400a0CAS |

[17]  T. El Malah, S. Rolf, S. M. Weidner, A. F. Thünemann, S. Hecht, Chem. – Eur. J. 2012, 18, 5837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVGrtb8%3D&md5=aec68b2f30a8764037c812426122bd1aCAS | 22461207PubMed |

[18]  P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 1990, 82, 1107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltVylsL8%3D&md5=fa5bc3523d700f5e4a3c47ef58341b01CAS | 2359136PubMed |

[19]  W. M. Eldehna, M. Fares, H. S. Ibrahim, M. H. Aly, S. Zada, M. M. Ali, S. M. Abou-Seri, H. A. Abdel-Aziz, D. A. Abou El Ella, Eur. J. Med. Chem. 2015, 100, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1eltLjM&md5=4c2b2b22bcbd6d4300834db07e644a79CAS | 26071861PubMed |