Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Influence of Amino Group Position on Aryl Moiety of SarAr on Metal Complexation and Protein Labelling

Vincent Jamier A B , Eskender Mume A C , Cyril Papamicaël B and Suzanne. V. Smith A C D
+ Author Affiliations
- Author Affiliations

A Center of Excellence in Antimatter Matter Studies (CAMS), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC NSW 2232, Australia.

B UMR CNRS COBRA 6014, 1 Rue Tesnière 76130 Mont-Saint-Aignan, France.

C CAMS, Australian National University, Canberra, ACT 0200, Australia.

D Corresponding author. Email: Suzanneoznq@gmail.com

Australian Journal of Chemistry 69(9) 1054-1061 https://doi.org/10.1071/CH15794
Submitted: 6 October 2015  Accepted: 17 March 2016   Published: 10 May 2016

Abstract

New hexaazamacrobicyclic cage bi-functional chelators (BFCs), 1-N-(3-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1,8-diamine (m-SarAr) and 1-N-(2-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1,8-diamine (o-SarAr), were synthesised. Their complexation with selected transitions metal ions i.e. CuII, CoII, and CdII was investigated over a range of pH at micromolar concentrations. CuII was complexed by m-SarAr and o-SarAr rapidly within 5 min in pH range of 5–9 at ambient temperature. In contrast, the complexation of CoII and CdII by these ligands was slower. The conjugation efficiencies of p-SarAr, m-SarAr, and o-SarAr to bovine serum albumin (BSA) were compared under various reactions. Conditions were optimised to a molar ratio of BSA/N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC)/BFC of 1 : 250 : 50 in pH 5 buffer for 30 min at ambient temperature. Under these conditions, the average number of p-SarAr, m-SarAr, or o-SarAr attached to BSA were determined to be 2.21 ± 0.16, 4.90 × 10–1 ± 2.48 × 10–2, and 2.67 × 10–2 ± 2.67 × 10–3, respectively. This fundamental study clearly demonstrates that the position of the amine on the phenyl ring has a significant effect on the metal complexation and conjugation reactions with BSA.


References

[1]  D. L. Morse, R. J. Gillies, Biochem. Pharmacol. 2010, 80, 731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosV2isLk%3D&md5=d8e9d3a340ab5e188fb7042c894fc8c6CAS | 20399197PubMed |

[2]  J. M. Hooker, Curr. Opin. Chem. Biol. 2010, 14, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qt7w%3D&md5=6ebe24b639867b6478d9f049110d378cCAS | 19880343PubMed |

[3]  S. V. Smith, Expert Opin. Drug Discovery 2007, 2, 659.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFynur0%3D&md5=2e1853843f3f75ccff7e0e05b1023f04CAS |

[4]  S. S. Gambhir, Nat. Rev. Cancer 2002, 2, 683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmslanu7c%3D&md5=02e98191416aa983dd48fa5099db411cCAS | 12209157PubMed |

[5]  S. V. Smith, J. Inorg. Biochem. 2004, 98, 1874.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlOktL0%3D&md5=c239789316825bed4fdad7bed361d7bcCAS | 15522415PubMed |

[6]  S. V. Smith, M. Jones, V. Holmes, Production and Selection of Metal PET Radioisotopes for Molecular Imaging (Ed. N. Singh) 2011 (ISBN: 978–953–307–748–2, InTech, https://doi.org/ 10.5772/23947). Available from http://www.intechopen.com/books/radioisotopes-applications-in-bio-medical-science/production-and-selection-of-metal-pet-radioisotopes-for-molecular-imaging.10.5772/23947

[7]  N. M. Di Bartolo, A. M. Sargeson, T. M. Donlevy, S. V. Smith, J. Chem. Soc., Dalton Trans. 2001, 2303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVWntL8%3D&md5=a3eef448081fc6469827190bcb257296CAS |

[8]  N. M. Di Bartolo, A. M. Sargeson, S. V. Smith, Org. Biomol. Chem. 2006, 4, 3350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xotl2nsbk%3D&md5=01a6b9f262bff93bb1b96019d9c6ae03CAS |

[9]  E. Mume, D. E. Lynch, A. Uedono, S. V. Smith, Dalton Trans. 2011, 40, 6278.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvF2qtbg%3D&md5=dc09f0ffc2aa5df225f66dcffd60019fCAS | 21409200PubMed |

[10]  S. D. Voss, S. V. Smith, N. Di Bartolo, L. J. McIntosh, E. M. Cyr, A. A. Bonab, J. L. J. Dearling, E. A. Carter, A. J. Fischman, S. T. Treves, S. D. Gillies, A. M. Sargeson, J. S. Huston, A. B. Packard, Proc. Natl. Acad. Sci. USA 2007, 104, 17489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ymtrfO&md5=27299ae98e42a6088272cf95a9f04083CAS | 17954911PubMed |

[11]  A. H. Asad, S. V. Smith, L. Kong, E. Mume, C. M. Jeffery, L. Morandeau, R. I. Roger, J. Labelled Compd. Radiopharm. 2013, 56, S248.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  L. G. Kong, E. Mume, G. Triani, S. V. Smith, Langmuir 2013, 29, 5609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVyksbY%3D&md5=f7af97340313bde55e44213993964f06CAS |

[13]  R. W. Ormsby, T. McNally, C. A. Mitchell, A. Musumeci, T. Schiller, P. Halley, L. Gahan, D. Martin, S. V. Smith, N. J. Dunne, Acta Mater. 2014, 64, 54.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslag&md5=977e02d24a4626457f46eb5624fd9678CAS |

[14]  (a) M. T. Ma, J. A. Karas, J. M. White, D. B. Scanlon, P. S. Donnelly, Chem. Commun. 2009, 3237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Wiurg%3D&md5=0375b9da88eb1e4dbe117445f2546be4CAS |
      (b) M. T. Ma, O. C. Neels, D. Denoyer, P. Roselt, J. A. Karas, D. B. Scanlon, J. M. White, R. J. Hicks, P. S. Donnelly, Bioconjugate Chem. 2011, 22, 2093.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. S. Cooper, M. T. Ma, K. Sunassee, K. P. Shaw, J. D. Williams, R. L. Paul, P. S. Donnelly, P. J. Blower, Bioconjugate Chem. 2012, 23, 1029.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B. M. Paterson, P. Roselt, D. Denoyer, C. Cullinane, D. Binns, W. Noonan, C. M. Jeffery, R. I. Price, J. M. White, R. J. Hicks, P. S. Donnelly, Dalton Trans. 2014, 43, 1386.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) H. C. Cai, J. Fissekis, P. S. Conti, Dalton Trans. 2009, 5395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVOltbs%3D&md5=e1129198e353efbd9c21f0bc8f875808CAS |
      (b) H. Cai, Z. Li, C.-W. Huang, R. Park, A. H. Shahinian, P. S. Conti, Nucl. Med. Biol. 2010, 37, 57.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Cai, Z. Li, C.-W. Huang, A. H. Shahinian, H. Wang, R. Park, P. S. Conti, Bioconjugate Chem. 2010, 21, 1417.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Cai, Z. Li, C.-W. Huang, R. Park, P. S. Conti, Curr. Radiopharm. 2011, 4, 68.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Liu, D. Li, C.-W. Huang, L.-P. Yap, R. Park, H. Shan, Z. Li, P. S. Conti, Mol. Imaging Biol. 2012, 14, 718.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) L. Y. Hu, N. Bauer, L. M. Knight, Z. Li, S. Liu, C. J. Anderson, P. S. Conti, J. L. Sutcliffe, Mol. Imaging Biol. 2014, 16, 567.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) W. M. Rockey, L. Huang, K. C. Kloepping, N. J. Baumhover, P. H. Giangrande, M. K. Schultz, Bioorg. Med. Chem. 2011, 19, 4080.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVehsb8%3D&md5=c8e8b2bc3a2e2ba4e438c51aadd1e32aCAS | 21658962PubMed |
      (b) S. Liu, D. Li, C.-H. Huang, L.-P. Yap, R. Park, H. Shan, Z. Li, Theranostics 2012, 2, 589.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. W. Brechbiel, O. A. Gansow, Bioconjugate Chem 1991, 187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVChtrg%3D&md5=585ceed78c039cbc5f4d44722dd3c55fCAS |

[18]  L. Camera, S. Kinuya, K. Garmestani, C. Wu, M. W. Brechbiel, L. H. Pai, T. J. McMurry, O. A. Gansow, I. Pastan, C. H. Paik, J. A. Carrasquillo, J. Nucl. Med. 1994, 35, 882.
         | 1:CAS:528:DyaK2cXlsFahtLo%3D&md5=eaa827ff494b2db03a6b2b202424de58CAS | 8176477PubMed |

[19]  (a) M. K. Moi, S. J. DeNardo, C. F. Meares, Cancer Res. 1990, 50, 789s.
         | 1:CAS:528:DyaK3cXhvFCmtLo%3D&md5=d3e1603961ae62e114cc8b047af45708CAS | 2297725PubMed |
      (b) H. S. Chong, X. Ma, T. Le, B. Kwamena, D. E. Melenic, E. D. Brady, H. A. Song, M. W. Brechbiel, J. Med. Chem. 2008, 51, 118.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) M. W. Sundberg, C. F. Meares, D. A. Goodwin, C. I. Diamanti, Nature 1974, 250, 587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXks1Gnsrg%3D&md5=b0cfc4b4ac43470a36092c703736dd6bCAS | 4210879PubMed |
      (b) M. W. Sundberg, C. F. Meares, D. A. Goodwin, C. I. Diamanti, J. Med. Chem. 1974, 17, 1304.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  I. A. Müller, F. Kratz, M. Jung, A. Warnecke, Tetrahedron Lett. 2010, 51, 4371.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  G. A. Bottomley, I. J. Clark, L. M. Creaser, R. J. Engelhardt, K. S. Geue, J. M. Hagen, G. A. Harrowfield, P. A. Lawrance, A. M. Lay, A. J. Sargeson, B. W. See, A. H. Skelton, F. R. White, Wilner, Aust. J. Chem. 1994, 47, 143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtFChtrc%3D&md5=57cae71f57a297409259966a86f0b54eCAS |

[23]  Y. Altun, J. Solution Chem. 2004, 33, 479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Cgurs%3D&md5=c3cdebbfc8f6c18f82fdc694322a6e24CAS |

[24]  E. Norkus, A. Vaskelis, A. Griguceviciene, G. Rozovskis, J. Reklaitis, P. Norkus, Transition Met. Chem. (Weinh.) 2001, 26, 465.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVemt7k%3D&md5=5374c6282321ae4fdc84042d1370ac3dCAS |

[25]  (a) A. M. Sargeson, Pure Appl. Chem. 1986, 58, 1511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsFWmsg%3D%3D&md5=1a9c6007cdd638801c39a7bb3d23e1d6CAS |
      (b) L. R. Gahan, J. M. Harrowfield, Polyhedron 2015, 94, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  D. M. Goldenberg, in Cancer Imaging with Radiolabelled Antibodies (Ed. D. M. Goldenberg) 1990 (Kluwer Academic Publishers: Boston, MA). 10.1007/978-1-4613-1497-4

[27]  M. Pourbaix, in Atlas of Electrochemical Equilibria in Aqueous Solutions 1974 (National Association of Corrosion Engineers: Houston, TX).

[28]  A. M. T. Bygott, R. J. Geue, S. F. Ralph, A. M. Sargeson, A. C. Willis, Dalton Trans. 2007, 4778.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyrurnK&md5=d9b8b30c71edfa9cba56844583c30385CAS |

[29]  L. Grøndahl, A. Hammershøi, A. M. Sargeson, V. J. Thöm, Inorg. Chem. 1997, 36, 5396.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  (a) C. G. Raison, Nature 1949, 163, 485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXjtFKltg%3D%3D&md5=cc607b0bcac02e5dfb544c88680892a1CAS | 18224894PubMed |
      (b) P. L. Carl, P. K. Chakravarty, J. A. Katzenellenbogen, J. Med. Chem. 1981, 24, 479.
         | Crossref | GoogleScholarGoogle Scholar |