Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Thienyl Difluoroboron β-Diketonates in Solution and Polylactide Media*

Milena Kolpaczynska A B , Christopher A. DeRosa A B , William A. Morris A and Cassandra L. Fraser A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904, USA.

B These authors contributed equally to this work.

C Corresponding author. Email: fraser@virginia.edu

Australian Journal of Chemistry 69(5) 537-545 https://doi.org/10.1071/CH15750
Submitted: 1 December 2015  Accepted: 18 January 2016   Published: 7 March 2016

Abstract

Difluoroboron β-diketonates (BF2bdks) have impressive optical properties in both solution and the solid state. In particular, both fluorescence and room-temperature phosphorescence are present when the dyes are confined to a rigid matrix, such as poly(lactic acid) (PLA). To expand the current knowledge and colour range capabilities of this unique type of multi-emitting chromophore, a series of thienyl-substituted BF2bdk complexes have been synthesized. The photophysical properties were investigated in dichloromethane solution and in the solid state as dye/PLA blends. By varying donor ability, i.e. methyl, phenyl, methoxy, and thienyl substituents, and by changing the dye loading in the PLA media (0.1–10 % dye loading) red-shifted emission was achieved, which is important for biological imaging applications. In dilute CH2Cl2 solution, complexes exhibited absorptions ranging from 350 to 420 nm, solid-state fluorescence in PLA ranging from 390 to 500 nm, and oxygen sensitive phosphorescence ranging from 540 to 585 nm in PLA blends. Promising candidates as dye/PLA blends serve as models for dye–polymer conjugates for application as biological oxygen nanoprobes.


References

[1]  S. Mukherjee, P. Thilagar, Chem. Commun. 2015, 51, 10988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXoslOitb0%3D&md5=9cab778ffa60b9a62e458f1bb2f5d6faCAS |

[2]  J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs12qtbfK&md5=cba3ea2a698f597b1e424bf76b58adfaCAS | 26492387PubMed |

[3]  S. Mukherjee, P. Thilagar, J. Mater. Chem. C 2016,
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. Nagai, K. Kokado, Y. Nagata, Y. Chujo, Macromolecules 2008, 41, 8295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWhu7fO&md5=c90c9fe3768c3f46fc7fc74e883e36a8CAS |

[5]  G. Zhang, J. Chen, S. J. Payne, S. E. Kooi, J. N. Demas, C. L. Fraser, J. Am. Chem. Soc. 2007, 129, 8942.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1Snsbo%3D&md5=8ed81471f27938ea81de19f38b4a89a1CAS | 17608480PubMed |

[6]  N. D. Nguyen, G. Zhang, J. Lu, A. E. Sherman, C. L. Fraser, J. Mater. Chem. 2011, 21, 8409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslOlsr8%3D&md5=73daaec29c36e6243086da8ce230787aCAS |

[7]  G. Zhang, J. P. Singer, S. E. Kooi, R. E. Evans, E. L. Thomas, C. L. Fraser, J. Mater. Chem. 2011, 21, 8295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslOmur4%3D&md5=f1d1e3fe838b18c90ac46470b9b408bfCAS |

[8]  E. Cogné-Laage, J.-F. Allemand, O. Ruel, J.-B. Baudin, V. Croquette, M. Blanchard-Desce, L. Jullien, Chem. – Eur. J. 2004, 10, 1445.
         | Crossref | GoogleScholarGoogle Scholar | 15034888PubMed |

[9]  G. Zhang, S. E. Kooi, J. N. Demas, C. L. Fraser, Adv. Mater. 2008, 20, 2099.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVWhsL4%3D&md5=15044a00e2272579339054ab2aa4d439CAS |

[10]  W. A. Morris, T. Liu, C. L. Fraser, J. Mater. Chem. C 2015, 3, 352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVSisbrJ&md5=75d9027f43a94e8c52b876b1e79a1651CAS |

[11]  D. R. G. Pitter, A. S. Brown, J. D. Baker, J. N. Wilson, Org. Biomol. Chem. 2015, 13, 9477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Omt7jP&md5=2039cabcd58f7fb30d17de7d6d08203cCAS |

[12]  C. Ran, X. Xu, S. B. Raymond, B. J. Ferrara, K. Neal, B. J. Bacskai, Z. Medarova, A. Moore, J. Am. Chem. Soc. 2009, 131, 15257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1artbfN&md5=b72c0ecc49538ace0deac744e507cd77CAS | 19807070PubMed |

[13]  D. Li, H. Zhang, Y. Wang, Chem. Soc. Rev. 2013, 42, 8416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOitrzN&md5=703e9811f11a63076c34d4e31b783082CAS | 23900268PubMed |

[14]  Y. Kajiwara, A. Nagai, K. Tanaka, Y. Chujo, J. Mater. Chem. C 2013, 1, 4437.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKiurjF&md5=c0bbc0cae1291d3e5c9577cc5a8e48ecCAS |

[15]  C.-T. Poon, D. Wu, W. H. Lam, V. W.-W. Yam, Angew. Chem. Int. Ed. 2015, 127, 10715.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  P. Galer, R. C. Korosec, M. Vidmar, B. Sket, J. Am. Chem. Soc. 2014, 136, 7383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvVWjsbo%3D&md5=cb0a0ae453fb5092f23d85f9db0f63a4CAS | 24819115PubMed |

[17]  G. Zhang, J. Lu, M. Sabat, C. L. Fraser, J. Am. Chem. Soc. 2010, 132, 2160.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Snsr8%3D&md5=40b36ba994add8705e7245d4a656c5c5CAS | 20108897PubMed |

[18]  J. Samonina-Kosicka, C. A. DeRosa, W. A. Morris, Z. Fan, C. L. Fraser, Macromolecules 2014, 47, 3736.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1WltLg%3D&md5=53b1ac9baa1207147085bc0fb11092bdCAS | 24954954PubMed |

[19]  L. Wang, K. Wang, B. Zou, K. Ye, H. Zhang, Y. Wang, Adv. Mater. 2015, 27, 2918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXls1eht70%3D&md5=70125e05f65b7fe83b934383adccc849CAS | 25833347PubMed |

[20]  L. Wang, K. Wang, H. Zhang, C. Jiao, B. Zou, K. Ye, H. Zhang, Y. Wang, Chem. Commun. 2015, 51, 7701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlslehtrw%3D&md5=0733fd89d9bae1b67395fc799efe5718CAS |

[21]  Y. Zhou, Y.-Z. Chen, J.-H. Cao, Q.-Z. Yang, L.-Z. Wu, C.-H. Tung, D.-Y. Wu, Dyes Pigments 2015, 112, 162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kiu7bM&md5=b779fdbdd7c21528487d842a4ef52db1CAS |

[22]  X. Wang, O. S. Wolfbeis, Chem. Soc. Rev. 2014, 43, 3666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFGhsbo%3D&md5=a337d94ea921a5efee561b2af786ca97CAS | 24638858PubMed |

[23]  R. Weissleder, Nat. Biotechnol. 2001, 19, 316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1SmsLg%3D&md5=7b6bed8f0dd6d9a1adbfce89442f4e7aCAS | 11283581PubMed |

[24]  C. A. DeRosa, J. Samonina-Kosicka, Z. Fan, H. C. Hendargo, D. H. Weitzel, G. M. Palmer, C. L. Fraser, Macromolecules 2015, 48, 2967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsVeitr4%3D&md5=702bc52a1d689585aa4d1d0bdd7b0603CAS | 26056421PubMed |

[25]  G. Zhang, G. L. Fiore, T. L. S. Clair, C. L. Fraser, Macromolecules 2009, 42, 3162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVejtrk%3D&md5=59f6af9d7b27acd6e06ecf0e1ed552adCAS |

[26]  C. A. DeRosa, C. Kerr, Z. Fan, M. Kolpaczynska, A. S. Mathew, R. E. Evans, G. Zhang, C. L. Fraser, ACS Appl. Mater. Interfaces 2015, 7, 23633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs12isbzO&md5=ac8ca715c40d7b398aaef9809d94ddaaCAS | 26480236PubMed |

[27]  G. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009, 8, 747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeit7jP&md5=6301e58aaf1cfb9b3aede948eef2eb00CAS | 19668206PubMed |

[28]  Y. Kubota, S. Tanaka, K. Funabiki, M. Matsui, Org. Lett. 2012, 14, 4682.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yhsLfF&md5=659758c3ef2a7b2e54e172367d599aa3CAS | 22928905PubMed |

[29]  C.-T. Poon, W. H. Lam, H.-L. Wong, V. W.-W. Yam, J. Am. Chem. Soc. 2010, 132, 13992.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFylsb7P&md5=6766dd0d4f916abfe53ea4d33315301eCAS | 20857970PubMed |

[30]  X. Zhang, M. Cui, R. Zhou, C. Chen, G. Zhang, Macromol. Rapid Commun. 2014, 35, 566.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOjtLfN&md5=7da00b8b1c91f016e42019df4fd084d0CAS | 24356973PubMed |

[31]  X. Yin, J. Chen, R. A. Lalancette, T. B. Marder, F. Jäkle, Angew. Chem. Int. Ed. 2014, 53, 9761.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyqsb7J&md5=4c62817434e65e2d092afa46eec9b56bCAS |

[32]  M. E. Cinar, T. Ozturk, Chem. Rev. 2015, 115, 3036.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvValtL8%3D&md5=5951b1e76bb5018489c8705ff24d4e06CAS | 25831021PubMed |

[33]  K. Ono, A. Nakashima, Y. Tsuji, T. Kinoshita, M. Tomura, J. Nishida, Y. Yamashita, Chem. – Eur. J. 2010, 16, 13539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2kurbF&md5=b188868db1eae9ebadffe9fcef0a30f3CAS | 20938932PubMed |

[34]  K. Ono, K. Yoshikawa, Y. Tsuji, H. Yamaguchi, R. Uozumi, M. Tomura, K. Taga, K. Saito, Tetrahedron 2007, 63, 9354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVWqtLc%3D&md5=5e128ce7ce3db12ec0d08e841d2d3723CAS |

[35]  S. Xu, R. E. Evans, T. Liu, G. Zhang, J. N. Demas, C. O. Trindle, C. L. Fraser, Inorg. Chem. 2013, 52, 3597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktF2ktbY%3D&md5=47495e73258ecb8575223aa771a2dcc5CAS | 23510181PubMed |

[36]  A. Pfister, G. Zhang, J. Zareno, A. F. Horwitz, C. L. Fraser, ACS Nano 2008, 2, 1252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFCrurg%3D&md5=a5aba6b41feab9283ece31f560f314e8CAS | 19081748PubMed |

[37]  D. B. G. Williams, M. Lawton, J. Org. Chem. 2010, 75, 8351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yktL3N&md5=f6b725ef8cc7375dede215cbbe3f65c2CAS |

[38]  Y. Bai, W. Chen, Y. Chen, H. Huang, F. Xiao, G.-J. Deng, RSC Adv. 2015, 5, 8002.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFegsLvM&md5=b93589362682bb71fbc86414bf334ee4CAS |

[39]  G. B. Deacon, P. C. Junk, A. Urbatsch, Aust. J. Chem. 2012, 65, 802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCisbbJ&md5=16b247545eb7512b4372b6e93eebe43aCAS |

[40]  L.-J. Xing, X.-M. Wang, H.-Y. Li, W. Zhou, N. Kang, P. Wang, B. Wang, RSC Adv. 2014, 4, 26783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKrt7nF&md5=5a4bcf70d1044d536a3c4d92475f5e2bCAS |

[41]  C. A. Heller, R. A. Henry, B. A. McLaughlin, D. E. Bliss, J. Chem. Eng. Data 1974, 19, 214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXkslSmtrk%3D&md5=2c023dc9556bfa23b346f6c11460aaeeCAS |

[42]  R. J. Jiménez Riobóo, M. Philipp, M. A. Ramos, J. K. Krüger, Eur. Phys. J. E: Soft Matter Biol. Phys. 2009, 30, 19.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).

[44]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f3f6bac3f3f06397785c39408dfcd392CAS |

[45]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=1446c2427b0599ea3e79a7334c6afa9cCAS |

[46]  R. Dennington, T. Keith, J. Millam, GaussView Version 5 2009 (Semichem Inc.: Shawnee Mission, KS).

[47]  X. Zhang, T. Xie, M. Cui, L. Yang, X. Sun, J. Jiang, G. Zhang, ACS Appl. Mater. Interfaces 2014, 6, 2279.
         | Crossref | GoogleScholarGoogle Scholar | 24484404PubMed |

[48]  X. Li, H. Liu, X. Sun, G. Bi, G. Zhang, Adv. Opt. Mater. 2013, 1, 549.
         | Crossref | GoogleScholarGoogle Scholar |