Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

X-Ray Structures and Dynamic Solution Behaviours of Five-Coordinate Nickel(ii) Complexes Containing Di- and Tritertiary Arsine Ligands*

David A. McMorran A C , Michael G. Fitzpatrick A , Robert G. Cunninghame A , Alison J. Downard B , Ward T. Robinson B and Lyall R. Hanton A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

B Department of Chemistry, University of Canterbury, Christchurch 8041, New Zealand.

C Corresponding author. Email: davidm@chemistry.otago.ac.nz

Australian Journal of Chemistry 69(5) 512-523 https://doi.org/10.1071/CH15693
Submitted: 30 October 2015  Accepted: 1 December 2015   Published: 13 January 2016

Abstract

A comparative study of solid-state structures and dynamic solution behaviour of two homoleptic five-coordinate NiII complexes containing the potentially tridentate ligands bis(2-(dimethylarsino)phenyl)methylarsine (1) and bis(2-(dimethylarsino)phenyl)phenylarsine (2) and the bidentate ligand 1,2-bis(dimethylarsino)benzene (3) is reported. [Ni(1)2](ClO4)2 (4) crystallises in the monoclinic space group P21/n and adopts a pseudo-square-pyramidal structure. One of the ligands is bidentate with an –AsMe2 group dangling at 3.748 (5) Å from the central Ni. In solution the dangling –AsMe2 is found to rapidly exchange with the coordinated –AsMe2 group trans to it at lower temperatures and with all the coordinated –AsMe2 groups at higher temperatures. [Ni(2)2](PF6)2 (5) crystallizes as 5·C4H10O in the monoclinic space group P21/c and adopts a pseudo-trigonal-bipyramidal geometry. One of the ligands is bidentate and an –AsMe2 group dangles at 4.137 (8) Å from the central Ni, bisecting an As–Ni–As angle of the trigonal plane. Compound 5 shows fluxional behaviour similar to 4 but the barriers to exchange have higher energies. [Ni(3)2X](ClO4) [X = Br (6), Cl (7)] undergo rapid intermolecular axial halide exchange in solution. Compound 6 crystallises in the monoclinic space group Cc and has a distorted square-pyramidal structure consisting of pseudo-chains of cations with potentially bridging Br donors held at ~3.8 Å from the Ni of an adjacent cation by steric interaction with Me groups. The X-ray structure of [Ni(3)2Br2] (8), which crystallises in the monoclinic space group P21/n, is also reported. The complex has a tetragonally distorted octahedral structure, with long Ni–Br bonds, and approximates the proposed transition state for the rapid halide exchange process observed for 6.


References

[1]  J. Chatt, F. G. Mann, J. Chem. Soc. 1939, 1622.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) For some recent reviews of the area, see: S. H. Chikkali, J. I. van der Vlugt, J. N. H. Reek, Coord. Chem. Rev. 2014, 262, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlSlsLk%3D&md5=570bf03ef56302f434c29b3ed8ec5b9fCAS |
      (b) M. M. Pereira, M. J. F. Calvete, R. M. B. Carrilho, A. R. Abreu, Chem. Soc. Rev. 2013, 42, 6990.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Lühr, J. Holz, A. Börner, ChemCatChem 2011, 3, 1708.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. L. Schwan, Chem. Soc. Rev. 2004, 33, 218.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. H. Valentine, J. H. Hillhouse, Synthesis 2003, 2437.
      (f) K. V. Katti, N. Pillarsetty, K. Raghuraman, Top. Curr. Chem. 2003, 229, 121.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) N. Pinault, D. W. Bruce, Coord. Chem. Rev. 2003, 241, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[3]     (a) Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands (Ed. C. A. McAuliffe) 1973 (Macmillan Press: London).
         (b) C. A. McAullife, W. Levason, Phosphine, Arsine and Stibine Complexes of the Transition Elements 1979 (Elsevier: Amsterdam).

[4]  (a) See for example: P. M. Uberman, M. R. Caira, S. E. Martín, Organometallics 2013, 32, 3220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1aksLs%3D&md5=785c4fdd8bc1f3464cd0e9393cee06cbCAS |
      (b) P. M. Uberman, M. N. Lanteri, S. C. Parajón Puenzo, S. E. Martín, Dalton Trans. 2011, 40, 9229.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. M. Uberman, M. N. Lanteri, S. E. Martín, Organometallics 2009, 28, 6927.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. A. Baber, S. Collard, M. Hooper, A. G. Orpen, P. G. Pringle, M. J. Wilkinson, R. L. Wingad, Dalton Trans. 2005, 1491.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. B. Bedford, C. S. J. Cazin, S. J. Coles, T. Gelbrich, M. B. Hursthouse, V. J. M. Scordia, Dalton Trans. 2003, 3350.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) R. D. Feltham, A. Kasenally, R. S. Nyhom, J. Organomet. Chem. 1967, 7, 285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXmsFGqug%3D%3D&md5=ac44c1bf79f25a57d2b359f99e3ccd17CAS |
      (b) R. D. Feltham, W. Silverthorn, Inorg. Synth. 1967, 10, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  The coordination chemistry of 3 is reviewed by E. C. Alyea in ref. [3a].

[7]  R. G. Cunninghame, R. S. Nyholm, M. L. Tobe, J. Chem. Soc. 1964, 5800.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXktVWnur8%3D&md5=18ba2cb0addd262394ebd818de8885d5CAS |

[8]  R. G Cunninghame, R. S. Nyholm, M. L. Tobe, J. Chem. Soc. Dalton 1972, 229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XmslGgsg%3D%3D&md5=9b4f7a472290cf0a49cc3cf00a77df6dCAS |

[9]  B. Bosnich, R. S. Nyholm, P. J. Pauling, M. L. Tobe, J. Am. Chem. Soc. 1968, 90, 4741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXisFejtA%3D%3D&md5=fe03cf8ea349be27f425ea7a985056f0CAS |

[10]  M. G. Fitzpatrick, L. R. Hanton, D. A. McMorran, Inorg. Chem. 1995, 34, 4821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1CisLw%3D&md5=33db08c2a5b2b562569baaabf8b95ab1CAS |

[11]  (a) R. S. Nyholm, J. Chem. Soc. 1950, 2061.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXlslWm&md5=ed218e9a57953b495b447ff55cb60046CAS |
      (b) C. M. Harris, R. S. Nyholm, D. J. Phillips, J. Chem. Soc. 1960, 4379.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) C. M. Harris, R. S. Nyholm, N. C. Stephenson, Nature 1956, 177, 1127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XovVSnuw%3D%3D&md5=3330823fd67240c333a4694a33d8c8caCAS |
      (b) N. C. Stephenson, Acta Crystallogr. 1964, 17, 592.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) A. M. F. Benial, V. Ramakrishnan, R. Murugesan, Spectrochim. Acta Part A 2001, 57, 1199.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2FhsVOgtA%3D%3D&md5=de3c7dc8be07f9834d24bca9bf42ac29CAS |
      (b) J. Lewis, R. S. Nyholm, G. A. Rodley, J. Chem. Soc. 1965, 1483.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) D. A. Sweigart, Inorg. Chim. Acta 1977, 23, L13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkt12ltb8%3D&md5=fe654deeb3cffbc76419e3e5f7b9fe80CAS |
      (b) R. Ettorre, G. Dolcetti, A. Peloso, Gazz. Chim. Ital. 1967, 97, 1681.

[15]  B. Bosnich, W. G. Jackson, S. T. D. Lo, Inorg. Chem. 1975, 14, 2998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlvF2ltbo%3D&md5=bc7f2afb9d2271f4ce059aa7a5066c1aCAS |

[16]  N. K. Roberts, S. B. Wild, Inorg. Chem. 1981, 20, 1892.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktlCmtr8%3D&md5=3a382fc71bba06206e0cf0f4c528f572CAS |

[17]  (a) A. J. Downard, L. R. Hanton, R. L. Paul, J. Chem. Soc., Chem. Comm. 1992, 23.
      (b) A. J. Downard, L. R. Hanton, D. A. McMorran, R. L. Paul, Inorg. Chem. 1993, 32, 6028.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  L. Sacconi, F. Mani, A. Bencini, in Comprehensive Coordination Chemistry (Ed. G. Wilkinson) 1987, Vol. 5, pp. 1–347 (Pergamon: Oxford).

[19]  (a) H. B. Gray, J. R. Preer, J. Am. Chem. Soc. 1970, 92, 7306.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlvFWksQ%3D%3D&md5=e61621b2e47735e3c822246bf2e8077bCAS |
      (b) W. Levason, M. L. Matthews, G. Reid, M. Webster, Dalton Trans. 2004, 554.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. C. Cloyd, D. W. Meek, Inorg. Chim. Acta 1972, 6, 480.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) L. Sacconi, Transition Met. Chem. (London) 1968, 4, 199.
         | 1:CAS:528:DyaF1cXltFSqtL8%3D&md5=5da9488fb566fc4cc0f2adafc3d6bd97CAS |
      (b) G. A. Barcley, C. M. Harris, J. V. Kingston, Chem. Commun. 1968, 965.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Midollini, F. Cecconi, J. Chem. Soc., Dalton Trans. 1973, 681.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W. Levason, C. A. McAuliffe, D. G. Watson, J. Coord. Chem. 1975, 4, 173.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. A. Bennett, J. D. Wild, J. Chem. Soc. A 1971, 536.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) B. Bosnich, R. Bramley, R. S. Nyholm, M. L. Tobe, J. Am. Chem. Soc. 1966, 88, 3926.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  N. C. Stephenson, unpublished observation cited in ref. [13b].

[22]  A. Rail, Ph.D. thesis, 1973, University College, London.

[23]  τ5 = (α – β)/60, where α and β are the two largest L–M–L bond angles, defined by the donor ligands L. For an ideal square pyramid, τ = 0, whereas for an ideal trigonal bipyramid, τ = 1 A. W. Addison, T. Nageswara Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=baf028f89e6a856496c396ebc84e65c4CAS |

[24]  (a) G. A. Mair, H. M. Powell, D. E. Henn, Proc. Chem. Soc. 1960, 415.
         | 1:CAS:528:DyaF3MXnvFCqtw%3D%3D&md5=5b1189818525f6b690f8ec9996092093CAS |
      (b) M. Mathew, G. J. Palenik, G. Dyer, D. W. Meek, J. Chem. Soc. Chem. Commun. 1972, 379.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. L. Stevenson, L. F. Dahl, J. Am. Chem. Soc. 1967, 89, 3424.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. G. Pierpont, R. Eisenberg, Inorg. Chem. 1972, 11, 828.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  See p. 292 in: J. E. Huheey, Inorganic Chemistry, 4th edn 1993 (HarperCollins College Publishers: New York, NY).

[26]  (a) L. R. Hanton, J. Evans, W. Levason, R. J. Perry, M. Webster, J. Chem. Soc., Dalton Trans. 1991, 2039.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvFKktbc%3D&md5=827210b61a27677dadb6fb5ddbd01366CAS |
      (b) P. K. Bernstein, G. A. Rodley, R. Marsh, H. B. Gray, Inorg. Chem. 1972, 11, 3040.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. J. Higgins, H. C. Jewiss, W. Levason, M. Webster, Acta Crystallogr. Sect. C: Struct. Chem. 1985, 41, 695.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Mahadevan, M. Seshasayee, B. L. Ramakrishna, P. T. Manoharan, Acta Crystallogr. Sect. C: Struct. Chem. 1985, 41, 38.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  A. Bondi, J. Chem. Phys. 1964, 68, 441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=f7d9f8afb031c3268385a0946614665fCAS |

[28]  J. K. Burdett, Molecular Shapes 1980 (John Wiley and Sons, Inc.: New York, NY).

[29]  (a) J. S. Brown, P. R. Sharp, Organometallics 2003, 22, 3604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFWrsLk%3D&md5=d4d77f0b849905a26c9808b848e2e077CAS |
      (b) J. J. Smee, M. L. Millar, C. A. Grapperhaus, J. H. Reibenspies, M. Y. Darensbourg, Inorg. Chem. 2001, 40, 3601.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Y. Darensbourg, I. Font, D. K. Mills, M. Pala, J. H. Reibenspies, Inorg. Chem. 1992, 31, 4965.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  A. Ghosh, T. Wondimagegn, J. Am. Chem. Soc. 2000, 122, 8101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlagur4%3D&md5=8cdb3e9b2e667763b26e649a3c1b953aCAS |

[31]  Detailed kinetic studies on acetonitrile solutions of 4 have shown that the rate of dissociation of 1 from nickel(ii) is on the order of 10–4 s–1 at 298 K. D. A. Buckingham, C. R. Clark, L. R. Hanton, D. A. McMorran, J. Chem. Soc., Dalton Trans. 1997, 1165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVCmtL4%3D&md5=a5532deef3f305d561ae0c3995595b41CAS |

[32]  V. Guttman, Top. Curr. Chem. 1972, 27, 59.

[33]  (a) L. Sacconi, D. Gatteschi, J. Coord. Chem. 1972, 2, 107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXjslehtg%3D%3D&md5=adccec2eaa431afc39513c20a6db654dCAS |
      (b) L. Baracco, M. T. Halfpenny, C. A. McAuliffe, J. Chem. Soc., Chem. Comm. 1971, 1502.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Baracco, M. T. Halfpenny, C. A. McAuliffe, J. Chem. Soc., Dalton Trans. 1973, 1945.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes 1991 (Wiley-VCH: Weinheim).

[35]  J. K. M. Sanders, B. K. Hunter, Modern NMR Spectroscopy 1993 (Oxford University Press: New York, NY).

[36]  J. Sandström, Dynamic NMR Spectroscopy 1982 (Academic Press: London). We note that the Eyring equation strictly only applies to exchange processes that interchange chemically identical species. The values we calculate here are for the interchange of enantiomers and, as such, can only be estimates.

[37]  C. M. Harris, R. S. Nyholm, D. J. Phillips, J. Chem. Soc. 1960, 4379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXjs1ynuw%3D%3D&md5=e3f353d13c661663e51e5eeac85c9c83CAS |

[38]     (a) SAINT V4, Area Detector Control and Integration Software 1996 (Siemens Analytical X-Ray Systems Inc.: Madison, WI).
         (b) Z. Otwinowski, W. Minor, in Methods in Enzymology: Macromolecular Crystallography Part A (Eds C. R. Carter Jr, R. M. Sweet) 1997, Vol. 276, pp. 307–326 (Academic Press: New York, NY).

[39]  G. M. Sheldrick, SADABS: Program for Absorption Correction 1996 (University of Göttingen: Göttingen).

[40]  G. M. Sheldrick, SHELXS and SHELXL 1996 (Institüt für Anorganische Chemie der Universität: Göttingen).

[41]  A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 1999, 32, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFOrsbo%3D&md5=10c277f63c8c86d588b1e09b076a3f41CAS |

[42]  L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=0c90961ce852cc81ea6e906e41ecf184CAS |

[43]  G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=1965db3178cb384357dbea613ab9f64bCAS |

[44]  C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, J. Appl. Cryst. 2006, 39, 453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkslehsbk%3D&md5=61630e588fda7f5df6ca801d013d2f0eCAS |

[45]  L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1KgsLg%3D&md5=73cc226b6a448ce22eb035dbadda41dcCAS |

[46]  http://www.povray.org/.