Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Structural Characterisation, DFT Studies, and Spectroscopic Properties of Copper(i) Complexes with Extended C–H⋯π Interactions

Ting-Hong Huang A C , Jia-Qin Liu B , Hu Yang A , Bin Zhao A and Jianping Shang A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Fine Chemicals and Surfactants in Sichuan Provincial University, Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China.

B School of Science, Xihua University, Chengdu 610000, China.

C Corresponding author. Email: hth_chem@126.com

Australian Journal of Chemistry 69(8) 826-835 https://doi.org/10.1071/CH15640
Submitted: 17 September 2015  Accepted: 4 February 2016   Published: 29 February 2016

Abstract

Two new CuI compexes, [Cu(phen)(PPh2(o-C6H4CHO))2](BF4)2 (1) and [Cu2(4,4′-bipy)(phen)2(PPh2(o-C6H4CHO))2](BF4)2·2CH3CN (2) (4,4′-bipy = 4,4′-bipyridine, PPh2(o-C6H4CHO) = o-(diphenylphosphino)benzaldehyde), have been synthesised and characterised by IR and UV-vis spectroscopy and X-ray crystal structural analysis. Structural analysis shows that the crystal structure of 1 contains 1D infinite chains formed by intermolecular C–H⋯π interactions, and the ordered-layer-lattice BF4 are located between the chains. For 2, intermolecular C–H⋯π and π⋯π interactions lead to the construction of 1D supramolecular arrays and 2D networks, and the ordered-layer-lattice CH3CN and BF4 are located between these networks. Density of states (DOS) and partial density of states (PDOS) studies indicate that the constitution of energy bands might be related to the change of ligands, with PPh2(o-C6H4CHO) showing the largest contributions to the HOMO of 2 and LUMO of 1. The UV-vis absorption spectra of 1 and 2 reveal that the absorption spectrum of 2 is red-shifted compared with 1. Moreover, the emission spectra of 1 and 2 in acetonitrile are also observed in the region of 480–700 nm.


References

[1]  J. Garcia-Alvarez, J. Diez, J. Gimeno, Green Chem. 2010, 12, 2127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyrurfM&md5=13353af48d16973854949d5de6745d8dCAS |

[2]  Y.-L. Hou, R. W.-Y. Sun, X.-P. Zhou, J.-H. Wang, D. Li, Chem. Commun. 2014, 50, 2295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVegu7g%3D&md5=d71821fc43870927e0116f3a95aa1773CAS |

[3]  I. Papazoglou, P. J. Cox, A. G. Hatzidimitriou, C. Kokotidou, T. Choli-Papadopoulou, P. Aslanidis, Eur. J. Med. Chem. 2014, 78, 383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvVWnsbk%3D&md5=1aef70e3fd53726a25fe06cd720396dcCAS | 24704611PubMed |

[4]  X. Pei, W. Kang, W. Yue, A. Bange, W. R. Heineman, I. Papautsky, Anal. Chem. 2014, 86, 4893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFChtLY%3D&md5=4327e32cd50104cfaf1932b23e8312adCAS | 24773513PubMed |

[5]  C. Satriano, G. T. Sfrazzetto, M. E. Amato, F. P. Ballistreri, A. Copani, M. L. Giuffrida, G. Grasso, A. Pappalardo, E. Rizzarelli, G. A. Tomaselli, R. M. Toscano, Chem. Commun. 2013, 49, 5565.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotFWhsLw%3D&md5=9f661424671f78e7a3ea2b38d82fdc97CAS |

[6]  F. Wu, J. Li, H. Tong, Z. Li, C. Adachi, A. Langlois, P. D. Harvey, L. Liu, W.-Y. Wong, W.-K. Wong, X. Zhu, J. Mater. Chem. C 2015, 3, 138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsl2gurnK&md5=2d73ca875bbb8c7ea37915d4f129925bCAS |

[7]  Z. Chen, S. Qin, D. Liu, Y. Shen, F. Liang, Cryst. Growth Des. 2013, 13, 3389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFalsrg%3D&md5=1efcb6d41a82ce428467f27d41a4f575CAS |

[8]  Q.-L. Ni, X.-F. Jiang, L.-C. Gui, X.-J. Wang, K.-G. Yang, X.-S. Bi, New J. Chem. 2011, 35, 2471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOjtrvE&md5=8184b0b4bcc2622c5a80669fb096202fCAS |

[9]  K. A. Vinogradova, V. F. Plyusnin, A. S. Kupryakov, M. I. Rakhmanova, N. V. Pervukhina, D. Y. Naumov, L. A. Sheludyakova, E. B. Nikolaenkova, V. P. Krivopalov, M. B. Bushuev, Dalton Trans. 2014, 43, 2953.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOmurc%3D&md5=409436bdfeb1a696bf645c1cb84871edCAS | 24346321PubMed |

[10]  R. Visbal, M. C. Gimeno, Chem. Soc. Rev. 2014, 43, 3551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFGhtrk%3D&md5=12aed0b1663463b0e767b5e1d1c80471CAS | 24604135PubMed |

[11]  E. C. Constable, C. E. Housecroft, P. Kopecky, E. Schonhofer, J. A. Zampese, CrystEngComm 2011, 13, 2742.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVansr4%3D&md5=d8b36ba0270a93a8d5797fd4a952ba0eCAS |

[12]  T.-H. Huang, M.-H. Zhang, J. Yan, H. Yang, S.-X. Hao, C.-L. Zhang, Inorg. Chim. Acta 2015, 437, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlKltbbO&md5=edf7d34e59607cf19e418a15a9f539d6CAS |

[13]  X.-J. Wang, L.-C. Gui, Q.-L. Ni, Y.-F. Liao, X.-F. Jiang, L.-H. Tang, Z. Zhang, Q. Wu, CrystEngComm 2008, 10, 1003.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt12msrg%3D&md5=c3994b9c7c1c086b365cf21ff9cd4c0eCAS |

[14]  C. I. Yeo, S. N. A. Halim, S. W. Ng, S. L. Tan, J. Zukerman-Schpector, M. A. B. Ferreira, E. R. T. Tiekink, Chem. Commun. 2014, 50, 5984.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslegtrw%3D&md5=b35a50d1ef460849bcfa9faaeda5a257CAS |

[15]  I. Andres-Tome, J. Fyson, F. Baiao Dias, A. P. Monkman, G. Iacobellis, P. Coppo, Dalton Trans. 2012, 41, 8669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1Cmu7Y%3D&md5=0538fe279e7794899be279511b8a4170CAS | 22677980PubMed |

[16]  J. Nitsch, C. Kleeberg, R. Frohlich, A. Steffen, Dalton Trans. 2015, 44, 6944.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksFWmtbk%3D&md5=4e146a9b72e2166c3af2a56198491b35CAS | 25781410PubMed |

[17]  R. D. Costa, D. Tordera, E. Orti, H. J. Bolink, J. Schonle, S. Graber, C. E. Housecroft, E. C. Constable, J. A. Zampese, J. Mater. Chem. 2011, 21, 16108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GrtLnE&md5=ea421f15a23d5fe33b810fdabb1d140bCAS |

[18]  M. Nishikawa, S. Kume, H. Nishihara, Phys. Chem. Chem. Phys. 2013, 15, 10549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFCms74%3D&md5=1475fc52f0ebe9d4fa9d2792a4b5773fCAS | 23515403PubMed |

[19]  M. Winter, WebElements Periodic Table (Professional Edition). Available at http://www.webelements.com (accessed 15 March 2011).

[20]  X. Liu, H. Nan, W. Sun, Q. Zhang, M. Zhan, L. Zou, Z. Xie, X. Li, C. Lu, Y. Cheng, Dalton Trans. 2012, 41, 10199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKnsLzM&md5=9f1d3e7cf4779cd67e1376ed14367723CAS | 22772090PubMed |

[21]  G. F. Manbeck, W. W. Brennessel, R. Eisenberg, Inorg. Chem. 2011, 50, 3431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1SjsLk%3D&md5=a8b9900f1683cd35c472bf7fc2a6a267CAS | 21417454PubMed |

[22]  D. Schweinfurth, N. Büttner, S. Hohloch, N. Deibel, J. Klein, B. Sarkar, Organometallics 2013, 32, 5834.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtF2jsb%2FO&md5=771f26f3032847abdd1256bfd1db0e17CAS |

[23]  D. M. Zink, T. Baumann, J. Friedrichs, M. Nieger, S. Bräse, Inorg. Chem. 2013, 52, 13509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGgsrzK&md5=f382791dc2b7811c8ed98e42d9521882CAS | 24205840PubMed |

[24]  S. Wei, L. Y. Zhang, S. J. Xia, Z. M. Ni, Wuli Huaxue Xuebao 2014, 30, 2249.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  X. J. Xu, W. H. Zhu, X. D. Gong, H. M. Xiao, Sci. China, Ser. B: Chem. 2008, 51, 427.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFymsrs%3D&md5=a96d5f5e8b00d890a149c71bdbe5d623CAS |

[26]  J.-L. Chen, X.-F. Cao, J.-Y. Wang, L.-H. He, Z.-Y. Liu, H.-R. Wen, Z.-N. Chen, Inorg. Chem. 2013, 52, 9727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12htLzL&md5=57dc208ff4180f7fa7f38f058936a51cCAS | 23962338PubMed |

[27]  A. Baez-Castro, J. Baldenebro-Lopez, A. Cruz-Enriquez, H. Hopfl, D. Glossman-Mitnik, M.-S. Valentin, M. Parra-Hake, J. J. Campos-Gaxiola, RSC Adv. 2014, 4, 42624.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVCjtL7O&md5=7460505300428b3d2c83c499ac64344aCAS |

[28]  T.-H. Huang, J. Yan, H. Yang, H.-M. Du, M.-H. Zhang, J. Coord. Chem. 2015, 68, 1514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVOmtrw%3D&md5=4321c70da88c041b8f6ac761a314c5b2CAS |

[29]  M. G. Crestani, G. F. Manbeck, W. W. Brennessel, T. M. McCormick, R. Eisenberg, Inorg. Chem. 2011, 50, 7172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlGgsbc%3D&md5=73efa42b8a740b7023c3a8a80e4c2951CAS | 21714488PubMed |

[30]  S. Igawa, M. Hashimoto, I. Kawata, M. Yashima, M. Hoshino, M. Osawa, J. Mater. Chem. C 2013, 1, 542.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVeltrrN&md5=b2816ac96c5f2324d1f6f0de494a244bCAS |

[31]  J. Min, Q. Zhang, W. Sun, Y. Cheng, L. Wang, Dalton Trans. 2011, 40, 686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wjtb3F&md5=b09e42d47782433b396148938e0fcf94CAS | 21127783PubMed |

[32]  L.-Y. Zou, Y.-X. Cheng, Y. Li, H. Li, H.-X. Zhang, A.-M. Ren, Dalton Trans. 2014, 43, 11252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgsb3N&md5=b2a851d09c37bd3f6d10159c08690bb1CAS | 24853779PubMed |