Mn(II)2Gd(III)3 Phosphonate as a Molecular Refrigerant
Xiaoyan Tang A , Ye Xu A , Wenpeng Ye A , Yan Tang A , Yunsheng Ma A B and Rongxin Yuan A BA Jiangsu Key Laboratory of Advanced Functional Materials, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China.
B Corresponding authors. Email: myschem@hotmail.com; yuanrx@cslg.edu.cn
Australian Journal of Chemistry 68(12) 1926-1928 https://doi.org/10.1071/CH15520
Submitted: 24 August 2015 Accepted: 17 September 2015 Published: 13 October 2015
Abstract
3d-Gd phosphonate clusters are attractive for their potential applications as magnetic coolers. A new pentanuclear cluster [Mn(II)2Gd(III)3(OH)(dtbmfPO3)2(tBuCO2)8(HO2CtBu)(H2O)2]·HO2CtBu·CH3CN (1) (dtbmfPO3H2 = (2,7-di-tert-butyl-9-methyl-9H-fluoren-9-yl)phosphonic acid) has been synthesised and characterised. The cluster has a planar structure in which the trinuclear {MnGd2(OH)} and dinuclear {MnGdO2} units are joined together by two phosphonate groups. The magnetic studies reveal that 1 shows antiferromagnetic interactions and a large magnetocaloric effect (ΔS = 20.9 J kg–1 K–1 at ΔH = 7 T).
References
[1] V. K. Pecharsky, K. A. Gschneidner, J. Magn. Magn. Mater. 1999, 200, 44.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtVGltbY%3D&md5=fc2e80479aeebfefdd8f1e0e2c256314CAS |
[2] R. Sessoli, Angew. Chem. Int. Ed. 2012, 51, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2gsLvK&md5=e1c2bd691746b31afc1c3cd75b498e33CAS |
[3] M. Evangelisti, E. K. Brechin, Dalton Trans. 2010, 39, 4672.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvF2htrc%3D&md5=5475e44ae73ebec5f555e05ffb1a926bCAS | 21488263PubMed |
[4] E. Cremades, S. Gómez-Coca, D. Aravena, S. Alvarez, E. Ruiz, J. Am. Chem. Soc. 2012, 134, 10532.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFCluro%3D&md5=21dd9fe49b3dced9566a80ce8600e8c1CAS | 22640027PubMed |
[5] A. N. Georgopoulou, S. Adam, C. P. Raotopoulou, V. Psycharis, R. Ballesteros, B. Abarca, A. K. Boudalis, Dalton Trans. 2010, 39, 5020.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvF2htrs%3D&md5=be76e60e56564b1d1bb93e4f4599feb8CAS | 21491662PubMed |
[6] (a) Y. Z. Zheng, G. J. Zhou, Z. Zheng, R. E. P. Winpenny, Chem. Soc. Rev. 2014, 43, 1462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFWhsb8%3D&md5=fbd257c48e0087627a04a0c3d9d6b2d9CAS | 24296785PubMed |
(b) J. W. Sharples, D. Collison, Polyhedron 2013, 54, 91.
| Crossref | GoogleScholarGoogle Scholar |
[7] Y. S. Ma, H. Li, J. J. Wang, S. S. Bao, R. Cao, Y. Z. Li, J. Ma, L. M. Zheng, Chemistry 2007, 13, 4759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1SisLw%3D&md5=3f486ca24a45e9c30507580717db143dCAS | 17373007PubMed |
[8] Y. Z. Zheng, M. Evangelisti, R. E. P. Winpenny, Angew. Chem. Int. Ed. 2011, 50, 3692.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt12jt7s%3D&md5=7173cc90a4c877ec0c1534395d0f4e5aCAS |
[9] (a) Y. Z. Zheng, M. Evangelisti, F. Tuna, R. E. P. Winpenny, J. Am. Chem. Soc. 2012, 134, 1057.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ajtr3K&md5=81331e0a3110efef5bf421d80ca6ff8fCAS | 22171923PubMed |
(b) Y. Z. Zheng, M. Evangelisti, R. E. P. Winpenny, Chem. Sci. (Camb.) 2011, 2, 99.
| Crossref | GoogleScholarGoogle Scholar |
[10] Y. Z. Zheng, E. M. Pineda, M. Helliwell, R. E. P. Winpenny, Chemistry 2012, 18, 4161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFGhsbY%3D&md5=eb068409a782251d13bc1cde66ec94eeCAS | 22407652PubMed |
[11] (a) K. D. Stigers, M. R. Koutroulis, D. M. Chung, J. S. Nowick, J. Org. Chem. 2000, 65, 3858.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2qs7s%3D&md5=fa08c2e199c6622acc0ef9fae74e6a28CAS | 10864776PubMed |
(b) Y. S. Ma, W. S. Cai, B. Chen, J. Y. Chang, X. Y. Tang, R. X. Yuan, CrystEngComm 2013, 15, 7615.
| Crossref | GoogleScholarGoogle Scholar |
[12] D. A. Brown, W. K. Glass, N. J. Fitzpatrick, T. J. Kemp, W. Errington, G. J. Clarkson, W. Hasse, F. Karsten, A. H. Mahdy, Inorg. Chim. Acta 2004, 357, 1411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVylur4%3D&md5=018ff9cd3c216cfa9288dc731023f27bCAS |
[13] Compound 1 was obtained by mixing Mn9 (0.2215 g, 0.1 mmol), Gd2 (0.1149 g, 0.075 mmol) and dtbmfPO3H2 (0.0372 g, 0.1 mmol) in CH3CN/CH2Cl2 (1 : 1) (16 mL) and stirred at room temperature for 12 h. The resulting solid was filtered and the colourless solution was kept in a vial for ~two weeks. Colourless crystals were collected by filtration, yield 0.03 g, 40 % (based on Gd2). Found: C 47.22, H 6.19, N 0.49 C96H154Gd3Mn2NO29P2 requires C 47.45, H 6.39, N 0.58 %.
[14] Crystal data for compound 1: C96H154Gd3Mn2NO29P2, Mr. = 2429.77, triclinic, Pī, (No. 2) a 13.8864(15), b 17.695(3), c 24.358(5) Å, α 96.749(4), β 90.116(4), γ 95.902(4)°, V 5911.6(17) Å3, Z 2, Dc 1.365 g cm–3, F000 2482, R1 0.0497, wR2 0.1451.
[15] J. W. Sharples, Y. Z. Zheng, F. Tuna, E. J. L. McInnes, D. Collison, Chem. Commun. 2011, 47, 7650.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVGhsrk%3D&md5=e4e7fae5326d72008f2a1896813e141dCAS |
[16] Harris notation describes the binding mode as [X, Y1Y2…Yn], where X is the overall number of metals bound by the whole ligand, and each value of Y refers to the number of metal atoms attached to the different donor atoms. R. A. Coxall, S. G. Harris, D. K. Henderson, S. Parsons, P. A. Tasker, R. E. P. Winpenny, J. Chem. Soc., Dalton Trans. 2000, 2349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1Cnu74%3D&md5=0b25b7e86783f81c828948a91625f0d6CAS |
[17] G. Karotsis, M. Evangelisti, S. J. Dalgrno, E. K. Brechin, Angew. Chem. Int. Ed. 2009, 48, 9928.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2hsrnM&md5=f64622b7b15f72a02c57812671d1650dCAS |