Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Complete Stereocontrol in the Synthesis of Harmonine and Novel Analogues Facilitated by a Grubbs Z-Selective Cross-Metathesis Catalyst

Steven-Alan G. Abel A , Wesley J. Olivier A , Richard L. Pederson B , Alex C. Bissember A C and Jason A. Smith A C
+ Author Affiliations
- Author Affiliations

A School of Physical Sciences – Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia.

B Materia Inc., 60 N. San Gabriel Boulevard, Pasadena, CA 91107, USA.

C Corresponding authors. Email: alex.bissember@utas.edu.au; jason.smith@utas.edu.au

Australian Journal of Chemistry 68(12) 1815-1820 https://doi.org/10.1071/CH15397
Submitted: 2 July 2015  Accepted: 4 August 2015   Published: 3 September 2015

Abstract

(R)-Harmonine was synthesised in 15 % overall yield via a six-step sequence exploiting a Z-selective cross-metathesis reaction as its centrepiece. By this strategy, the cis-olefin present in the target could be installed exclusively. The use of an alcohol and an ester as the amine precursors was crucial for isolating the cross-metathesis product from the self-metathesis products. This method was also used to prepare two novel analogues of harmonine.


References

[1]  R. L. Koch, J. Insect Sci. 2003, 3, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  P. M. J. Brown, T. Adriaens, H. Bathon, J. Cuppen, A. Goldarazena, T. Hägg, M. Kenis, B. E. M. Klausnitzer, I. Kovář, A. J. M. Loomans, M. E. N. Majerus, O. Nedved, J. Pedersen, W. Rabitsch, H. E. Roy, V. Ternois, I. A. Zakharov, D. B. Roy, BioControl 2008, 53, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. Kenis, H. E. Roy, R. Zindel, M. E. N. Majerus, BioControl 2008, 53, 235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1Sj&md5=61e443d28c9c01d5c6317adc309536f0CAS |

[4]  G. M. Happ, T. Eisner, Science 1961, 134, 329.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvhtlCruw%3D%3D&md5=03c4fbf70db470734b6c3667f2c0a387CAS | 17819303PubMed |

[5]  T. L. Galvan, S. Kells, W. D. Hutchison, J. Agric. Food Chem. 2008, 56, 1065.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFymtA%3D%3D&md5=7667207b472ee5d3ec285589120d497eCAS | 18193837PubMed |

[6]  M. F. Braconnier, J. C. Braekman, D. Daloze, J. M. Pasteels, Experientia 1985, 41, 519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkt1Sjsbc%3D&md5=2b7417b3410a325f931daea906275b9eCAS |

[7]  C. R. Röhrich, C. J. Ngwa, J. Wiesner, H. Schmidtberg, T. Degenkolb, C. Kollewe, R. Fischer, G. Pradel, A. Vilcinskas, Biol. Lett. 2012, 8, 308.
         | Crossref | GoogleScholarGoogle Scholar | 21937493PubMed |

[8]  (a) M. F. Braconnier, J. C. Braekman, D. Daloze, Bull. Soc. Chim. Belg. 1985, 94, 605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit1Cktb8%3D&md5=f9654e981d9aaf5a1b1a5a2a91dace89CAS |
      (b) D. Enders, D. Bartzen, Liebigs Ann. Chem. 1991, 1991, 569.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) B. K. Keitz, K. Endo, P. R. Patel, M. B. Herbert, R. H. Grubbs, J. Am. Chem. Soc. 2012, 134, 693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2jurzN&md5=48755bb3fafc29372dc38132177dfd1cCAS | 22097946PubMed |
      (b) L. E. Rosebrugh, M. B. Herbert, V. M. Marx, B. K. Keitz, R. H. Grubbs, J. Am. Chem. Soc. 2013, 135, 1276.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  S. C. Philkhana, P. Dhasaiyan, B. L. V. Prasad, D. S. Reddy, RSC Adv. 2014, 4, 30923.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  N. C. Nagel, A. Masic, U. Schurigt, W. Boland, Org. Biomol. Chem. 2015, 13, 5139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltFWltro%3D&md5=699ed48fa8de8c5aa8b01f8d7f46c03fCAS | 25835581PubMed |

[12]  A. K. Chatterjee, T.-L. Choi, D. P. Sanders, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 11360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVyqtLs%3D&md5=f95e110b77526732de54aed30e726bb4CAS | 16220959PubMed |

[13]  Our best results were obtained reacting carbamates 4 (1 equiv) and 5 (4 equiv) with 5 % catalyst 2 in THF at 35°C for 16 h. We did not quantitatively determine reaction conversion.

[14]  No reaction was observed when the cross-metathesis was attempted on dec-9-en-1-amine employing 0.8 % of catalyst 2 in THF at 35°C for 16 h.

[15]  (a) For synthetic applications of Grubbs Z-Selective cross-metathesis catalyst 3 see, for example: J. S. Cannon, R. H. Grubbs, Angew. Chem. Int. Ed. 2013, 52, 9001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOjsbfF&md5=980529b19fe2910cd5f9d55d2f6a5d54CAS |
      (b) B. Morandi, Z. K. Wickens, R. H. Grubbs, Angew. Chem. Int. Ed. 2013, 52, 9751.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. L. Quigley, R. H. Grubbs, Chem. Sci. 2014, 5, 501.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. L. Mangold, D. J. O’Leary, R. H. Grubbs, J. Am. Chem. Soc. 2014, 136, 12469.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. A. Pribisko, T. S. Ahmed, R. H. Grubbs, Polyhedron 2014, 84, 144.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  Consequently, the authors also do not comment on any problems arising from the chromatographic purification of olefin 6 and any co-eluting products resulting from homodimerisation of carbamates 4 and 5.

[17]  Reddy and co-workers note that cross-metathesis product 6 is obtained via the slow addition of carbamates 4 and 5 to a solution of catalyst 2 in dichloromethane at 45°C. Presumably, this is used to simulate infinite dilution conditions, which is a viable strategy when the product of the reaction does not participate in additional metathesis reactions. However, in this case, it is unclear how this approach works to supress homodimerisation of carbamates 4 and 5 under the reaction conditions.

[18]  Alcohol 7 was completely consumed in this reaction and only a trace amount of diol 18 was isolated. When this reaction was performed in THF, GC and 13C NMR spectroscopy suggested the presence of the trans-isomer of olefin 9.

[19]  The respective Rf values of olefin 9, diester 14, and diol 18 in 50 % EtOAc/hexane were found to be 0.5, 0.7, and 0.3 by TLC.

[20]  W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXksF2hu7s%3D&md5=3ec91dac3f70d50b963bd0dc5b364fa5CAS |

[21]  A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVerur0%3D&md5=78dd085ab0087d97669b9b0aea1cf21fCAS |

[22]  M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, J. Lindström, J. Am. Chem. Soc. 1996, 118, 8542.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltFeksL8%3D&md5=bcb1a8e1a2fd4c3e565d038ada3a807bCAS |

[23]  K. J. Fraunhoffer, D. A. Bachovchin, M. C. White, Org. Lett. 2005, 7, 223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFGgsbvK&md5=4feadc0ad95b19dc85c9041e1853b9e7CAS | 15646963PubMed |

[24]  J. A. Zerkowski, D. K. Y. Solaiman, J. Am. Oil Chem. Soc. 2006, 83, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVars7s%3D&md5=f9560c15ca458a43f3d770f7563e84fdCAS |

[25]  S. K. Pillai, S. Hamoudi, K. Belkacemi, Appl. Catal. A 2013, 455, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFCnsrw%3D&md5=793b98abe30b989971fe40f3166fb4d9CAS |