Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Hydrogel-Derived Soft Materials for Biomimetic and Energy-Related Functions

Goudappagouda, A , Vivek Chandrakant Wakchaure A , Kayaramkodath Chandran Ranjeesh A and Sukumaran Santhosh Babu A B
+ Author Affiliations
- Author Affiliations

A Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr Homi Bhabha Road, Pune-411 008, India.

B Corresponding author. Email: sb.sukumaran@ncl.res.in

Australian Journal of Chemistry 69(1) 2-7 https://doi.org/10.1071/CH15304
Submitted: 14 April 2015  Accepted: 10 July 2015   Published: 21 August 2015

Abstract

Supramolecular assembly of molecules leading to gelation of large amount of solvents is always a fascinating topic of research. In the very recent past, the exciting developments have marked hydrogels as intriguing materials with excellent features. Hydrogel scaffolds enable the accommodation of organic and/or inorganic guest materials to deliver diverse applications. Hydrogels have been exploited to generate soft materials with mechanical anisotropy, tunable rigidity, self-healing properties, as well as photocatalytic capabilities towards H2 production. Remarkably, the combination of a photocatalyst and a light-harvesting system in the gel matrix provides a unique means to photocatalytic H2 production. The biomimetic applications of hydrogels have also generated much attraction due to their potential demonstrations. The diverse applications underline the significance of such a soft gel medium to reach the final goal. Herein, important reports pertaining to the use of hydrogels as an effective way to generate advanced materials for biomimetic and energy-related issues are discussed.


References

[1]  L. A. Estroff, A. D. Hamilton, Chem. Rev. 2004, 104, 1201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVWks7w%3D&md5=7fd6e66ef6d21995ef9b60f6e4f6dd33CAS | 15008620PubMed |

[2]  M. de Loos, B. L. Feringa, J. H. van Esch, Eur. J. Org. Chem. 2005, 3615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvF2lurc%3D&md5=814b5d24513a3bec428d033098a26a58CAS |

[3]  Z. L. Wu, J. P. Gong, NPG Asia Mater. 2011, 3, 57.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  J. A. Burdick, W. L. Murphy, Nat. Commun. 2012, 3, 1269.
         | Crossref | GoogleScholarGoogle Scholar | 23232399PubMed |

[5]  A. Döring, W. Birnbaum, D. Kuckling, Chem. Soc. Rev. 2013, 42, 7391.
         | Crossref | GoogleScholarGoogle Scholar | 23677178PubMed |

[6]  J. Raeburn, A. Z. Cardoso, D. J. Adams, Chem. Soc. Rev. 2013, 42, 5143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1ers7g%3D&md5=2588a17b32100dd0591bff52cabc842bCAS | 23571407PubMed |

[7]  S. S. Babu, V. K. Praveen, A. Ajayaghosh, Chem. Rev. 2014, 114, 1973.and references cited therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvFKltw%3D%3D&md5=74aadd1e87eca1d6756e8fdbd2a74403CAS | 24400783PubMed |

[8]  X. Du, J. Zhou, B. Xu, Chem. – Asian J. 2014, 9, 1446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1Snu7Y%3D&md5=39c7022f2c03c36bd14c7eff4fe646d2CAS | 24623474PubMed |

[9]  L.-Y. Chu, R. Xie, X.-J. Ju, W. Wang, Smart Hydrogel Functional Materials 2013 (Springer: Berlin).

[10]  Polymeric and Self Assembled Hydrogels: From Fundamental Understanding to Applications (Eds X. J. Loh, O. A. Scherman) 2012 (RSC Publishing: Cambridge).

[11]  Biomedical Hydrogels (Ed. S. Rimmer) 2011 (Woodhead Publishing: Cambridge).

[12]  Y. M. Abul-Haija, R. V. Ulijn, in Hydrogels in Cell-Based Therapies (Eds C. J. Connon, I. W. Hamley) 2014, Chapter 6, pp. 112–134 (RSC Publishing: Cambridge).

[13]  K. V. Rao, K. K. R. Datta, M. Eswaramoorthy, S. J. George, Angew. Chem., Int. Ed. 2011, 50, 1179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKnsLw%3D&md5=d0f6c98abcf9c3ddaaf40d74296305c2CAS |

[14]  S. Mukherjee, T. Kar, P. K. Das, Chem. – Eur. J. 2014, 9, 2798.
         | 1:CAS:528:DC%2BC2cXht1Wltr7I&md5=181e2d0bc8ceb26b6a2ea09dde9f94cdCAS |

[15]  J. Nanda, A. Biswas, B. Adhikari, A. Banerjee, Angew. Chem., Int. Ed. 2013, 52, 5041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFeju7g%3D&md5=f45360b8f799b2f3745a30f7272e9f7fCAS |

[16]  G. R. Hendrickson, L. A. Lyon, Soft Matter 2009, 5, 29.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWisLzM&md5=9af15c201248c6a011a517ff2414f244CAS |

[17]  Y. Guan, Y. Zhang, Chem. Soc. Rev. 2013, 42, 8106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyrtbnM&md5=b33c15c8a5dfb431f4385bee3f5633a5CAS | 23860617PubMed |

[18]  C. Ren, J. Zhang, M. Chen, Z. Yang, Chem. Soc. Rev. 2014, 43, 7257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1aitb%2FO&md5=c6318225f240deedaf01f5aabfd66fd7CAS | 25060777PubMed |

[19]  T. Yoshii, S. Onogi, H. Shigemitsu, I. Hamachi, J. Am. Chem. Soc. 2015, 137, 3360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXislGjt7s%3D&md5=865adb61d89e2a403a3f39bb8cca81ddCAS | 25679407PubMed |

[20]  A. R. Hirst, B. Escuder, J. F. Miravet, D. K. Smith, Angew. Chem., Int. Ed. 2008, 47, 8002.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OltLzJ&md5=7d9ce2f49988b5629d416c32a3d34a86CAS |

[21]  N. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer, Adv. Mater. 2006, 18, 1345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVOgtLY%3D&md5=ee54f2aab5ca637ab543f11ed0bb42a4CAS |

[22]  B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, N. A. Peppas, Adv. Mater. 2009, 21, 3307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrsb7L&md5=f6a4aa88c98d6f14ce3b2327d8094723CAS | 20882499PubMed |

[23]  N. Annabi, A. Tamayol, J. A. Uquillas, M. Akbari, L. E. Bertassoni, C. Cha, G. Camci-Unal, M. R. Dokmeci, N. A. Peppas, A. Khademhosseini, Adv. Mater. 2014, 26, 85.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWmt7%2FE&md5=83d9196b9cf518853fc8a1f55a1872acCAS | 24741694PubMed |

[24]  J. B. Matson, S. I. Stupp, Chem. Commun. 2012, 48, 26.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFerur7N&md5=98e09f768814a2c3049f89b9bd1437d3CAS |

[25]  K. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFSqu7w%3D&md5=039e6afd7ddb8bc6002cd0dad7fd00dbCAS | 11710233PubMed |

[26]  X. Jia, K. L. Kiick, Macromol. Biosci. 2009, 9, 140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFKjtbY%3D&md5=cf64164a7b67f5ca0d7727e410ace127CAS | 19107720PubMed |

[27]  B. Balakrishnan, R. Banerjee, Chem. Rev. 2011, 111, 4453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFKgtb0%3D&md5=5ae8973414e41bd8e460cee508cb1cadCAS | 21417222PubMed |

[28]  G. Camci-Unal, N. Annabi, M. R. Dokmeci, R. Liao, A. Khademhosseini, NPG Asia Mater. 2014, 6, e99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslWltLs%3D&md5=8e8c66c0baa2fe881e3f4b7d6f35c5beCAS |

[29]  J. A. Hunt, R. Chen, T. van Veen, N. Bryan, J. Mater. Chem., B 2014, 2, 5319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVarsb%2FF&md5=11cc080a601c17158f3a590eaa5fcc3aCAS |

[30]  H. Wang, S. C. Heilshorn, Adv. Mater. 2015, 27, 3717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosFKisbs%3D&md5=93a3e92f7191ad512bb249b2d80524b8CAS | 25989348PubMed |

[31]  Y. Qiu, K. Park, Adv. Drug Delivery Rev. 2001, 53, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFyrtbg%3D&md5=4d2319cf013a8d01e69f4132c19fefb8CAS |

[32]  T. Vermonden, R. Censi, W. E. Hennink, Chem. Rev. 2012, 112, 2853.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVans74%3D&md5=064ce1a0bac2a57fbeba738149f53833CAS | 22360637PubMed |

[33]  A. Vashist, A. Vashist, Y. K. Gupta, S. Ahmad, J. Mater. Chem., B 2014, 2, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVyjur3K&md5=5b700453664f5bf9448517865078b4a9CAS |

[34]  L. Yu, J. Ding, Chem. Soc. Rev. 2008, 37, 1473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslOgtLY%3D&md5=17650e0709684d731b3001b0c2e42159CAS | 18648673PubMed |

[35]  Y. Li, J. Rodrigues, H. Tomás, Chem. Soc. Rev. 2012, 41, 2193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWlsbs%3D&md5=3606c0193ae4cc60da04884f2059b4b1CAS | 22116474PubMed |

[36]  B. P. Purcell, D. Lobb, M. B. Charati, S. M. Dorsey, R. J. Wade, K. N. Zellars, H. Doviak, S. Pettaway, C. B. Logdon, J. A. Shuman, P. D. Freels, J. H. Gorman, R. C. Gorman, F. G. Spinale, J. A. Burdick, Nat. Mater. 2014, 13, 653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFOgu7o%3D&md5=363a30019db7388ee7c6c033d8ec16eeCAS | 24681647PubMed |

[37]  C. Ghobril, M. W. Grinstaf, Chem. Soc. Rev. 2015, 44, 1820.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXit1CqtbY%3D&md5=3cbc49acaa5fdd40e0818ed3c311b47dCAS | 25649260PubMed |

[38]  F. Zhao, M. L. Ma, B. Xu, Chem. Soc. Rev. 2009, 38, 883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFaju7c%3D&md5=2aeacaca9a51e55a43508cd8be5c3843CAS | 19421568PubMed |

[39]  P. Calvert, Adv. Mater. 2009, 21, 743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1ajur4%3D&md5=91ae36a3101715d1657611cf32eb6aebCAS |

[40]  A. Döring, W. Birnbaum, D. Kuckling, Chem. Soc. Rev. 2013, 42, 7391.
         | Crossref | GoogleScholarGoogle Scholar | 23677178PubMed |

[41]  J. Malda, J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. A. Dhert, J. Groll, D. W. Hutmacher, Adv. Mater. 2013, 25, 5011.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlansLrK&md5=a24be5eac315d62574489b5b00ba7b2eCAS | 24038336PubMed |

[42]  W. T. Truong, Y. Su, J. T. Meijer, P. Thordarson, F. Braet, Chem. – Asian J. 2011, 6, 30.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WnsbvI&md5=5a33b1b9dea2faed1ead767054662e61CAS | 21077096PubMed |

[43]  Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVGnsQ%3D%3D&md5=ee46e19d63741187fe4ee9b5cab7d798CAS | 20090750PubMed |

[44]  M. Liu, Y. Ishida, Y. Ebina, T. Sasaki, T. Hikima, M. Takata, T. Aida, Nature 2015, 517, 68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXislOmsg%3D%3D&md5=c07b741da139d9f78982c0311b056dc2CAS | 25557713PubMed |

[45]  M. Liu, Y. Ishida, Y. Ebina, T. Sasaki, T. Aida, Nat. Commun. 2013, 4, 2029.
         | Crossref | GoogleScholarGoogle Scholar | 23774219PubMed |

[46]  P. H. J. Kouwer, M. Koepf, V. A. A. Le Sage, M. Jaspers, A. M. van Buul, Z. H. Eksteen-Akeroyd, T. Woltinge, E. Schwartz, H. J. Kitto, R. Hoogenboom, S. J. Picken, R. J. M. Nolte, E. Mendes, A. E. Rowan, Nature 2013, 493, 651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOlurk%3D&md5=50e600283416cf920ebe29bcfc8c0ebaCAS |

[47]  A. S. Weingarten, R. V. Kazantsev, L. C. Palmer, M. McClendon, A. R. Koltonow, A. P. S. Samuel, D. J. Kiebala, M. R. Wasielewski, S. I. Stupp, Nat. Chem. 2014, 6, 964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1yhtrfE&md5=1c1dc01f04520d210e0398b897aed1c3CAS | 25343600PubMed |

[48]  A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKjurfP&md5=1f997ac0d272806619c59dfbbffa5f4bCAS | 21160514PubMed |

[49]  Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 1270.
         | Crossref | GoogleScholarGoogle Scholar | 23232400PubMed |

[50]  H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Nat. Commun. 2012, 3, 603.
         | Crossref | GoogleScholarGoogle Scholar | 22215078PubMed |

[51]  M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511.
         | Crossref | GoogleScholarGoogle Scholar | 22027591PubMed |

[52]  T. Nakamura, Y. Takashima, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2014, 5, 4622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVert7k%3D&md5=44528195a2bcf9cb0f53e0525e284787CAS | 25099995PubMed |

[53]  J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGnt73N&md5=11548f3b9a9203c617d1e96bee1e366cCAS | 22955625PubMed |

[54]  J. Boekhoven, J. M. Poolman, C. Maity, F. Li, L. van der Mee, C. B. Minkenberg, E. Mendes, J. H. van Esch, R. Eelkema, Nat. Chem. 2013, 5, 433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlOgt7w%3D&md5=0b4454ebde7ac28ef743f7c2257052d5CAS | 23609096PubMed |

[55]  J. M. García, G. O. Jones, K. Virwani, B. D. McCloskey, D. J. Boday, G. M. ter Huurne, H. W. Horn, D. J. Coady, A. M. Bintaleb, A. M. S. Alabdulrahman, F. Alsewailem, H. A. A. Almegren, J. L. Hedrick, Science 2014, 344, 732.
         | Crossref | GoogleScholarGoogle Scholar | 24833389PubMed |

[56]  B. P. Purcell, D. Lobb, M. B. Charati, S. M. Dorsey, R. J. Wade, K. N. Zellars, H. Doviak, S. Pettaway, C. B. Logdon, J. A. Shuman, P. D. Freels, J. H. Gorman, R. C. Gorman, F. G. Spinale, J. A. Burdick, Nat. Mater. 2014, 13, 653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFOgu7o%3D&md5=363a30019db7388ee7c6c033d8ec16eeCAS | 24681647PubMed |