Acetylenes from Aldehydes. Preparation of Ethynylphenols and Phenylacetylenes by Flash Vacuum Pyrolysis of Isoxazolones*
Curt Wentrup A B C , Maria Wiedenstritt A and Hans-Wilhelm Winter A
+ Author Affiliations
- Author Affiliations
A Fachbereich Chemie der Philipps-Universität Marburg, D-35037 Marburg, Germany.
B School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
C Corresponding author. Email: wentrup@uq.edu.au
Australian Journal of Chemistry 68(8) 1233-1236 https://doi.org/10.1071/CH15234
Submitted: 29 April 2015 Accepted: 20 May 2015 Published: 5 June 2015
Abstract
The flash vacuum pyrolysis method of synthesis of acetylenes from aldehydes via isoxazolones is a convenient method for the preparation of a variety of derivatives, including kinetically unstable, sensitive compounds such as the ethynylphenols.
References
[1] C. Wentrup, J. Becker, H.-W. Winter, Angew. Chem. Int. Ed. 2015, 54, 5702.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvV2qu7s%3D&md5=b7dd16af7032c9dffce3d82f6ee2c1c5CAS |
[2] C. Wentrup, H.-W. Winter, D. Kvaskoff, J. Phys. Chem. A 2015, 119,
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) Acetylenes in synthesis: Science of Synthesis: Houben-Weyl Methods of Molecular Transformations (Ed. H. Hopf) 2008, Vol. 43 (Thieme: Stuttgart).
(b) I. V. Alabugin, B. Gold, J. Org. Chem. 2013, 78, 7777.
| Crossref | GoogleScholarGoogle Scholar |
(c) In materials science: E. Chernick, R. Tykwinski, J. Phys. Org. Chem. 2013, 26, 742.
| Crossref | GoogleScholarGoogle Scholar |
(d) In click chemistry: H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. Engl. 2001, 40, 2004.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. E. Moses, A. D. Moorhouse, Chem. Soc. Rev. 2007, 36, 1249.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. G. Finn, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1231.and subsequent papers in this thematic issue.
| Crossref | GoogleScholarGoogle Scholar |
[4] C. Wentrup, H.-W. Winter, Angew. Chem. Int. Ed. Engl. 1978, 17, 609.
| Crossref | GoogleScholarGoogle Scholar |
[5] C. Wentrup, W. Reichen, Helv. Chim. Acta 1976, 59, 2615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXivFCgug%3D%3D&md5=2a7b707439467d26d26cca74fbab8272CAS |
[6] H. S. Rzepa, C. Wentrup, J. Org. Chem. 2013, 78, 7565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFagtb8%3D&md5=b490bc6d532dddc8525aaf0bdfc17de5CAS | 23795601PubMed |
[7] I. D. Mackie, R. P. Johnson, J. Org. Chem. 2009, 74, 499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmtrvO&md5=47cc0a0998cf3fcd5b9ce76ed82c6021CAS | 19067566PubMed |
[8] (a) H.-W. Winter, C. Wentrup, Angew. Chem. Int. Ed. Engl. 1980, 19, 720.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Wentrup, H. Briehl, P. Lorencak, U. J. Vogelbacher, H.-W. Winter, A. Maquestiau, R. Flammang, J. Am. Chem. Soc. 1988, 110, 1337.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. Wentrup, Aust. J. Chem. 2014, 67, 1150.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVynt77E&md5=4bae9731de0c1c8a40cb2940537ce510CAS |
[10] F. Bohlmann, K.-D. Albrecht, G. Schmidt, Chem. Ber. 1966, 99, 2822.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XkvF2isr4%3D&md5=d65e877a327498735675a131f833de33CAS |
[11] I. L. Kotlyarevskii, M. I. Bardamova, Izvest. Akad. Nauk SSSR, Ser. Khim. 1964, 11, 2073.
[12] T. Pirali, S. Gatti, R. Di Brisco, S. Tacchi, R. Zaninetti, E. Brunelli, A. Massarotti, G. Sorba, P. L. Canonico, L. Moro, A. A. Genazzani, G. C. Tron, R. A. Billington, ChemMedChem 2007, 2, 437.The IR spectra of 2-, 3-, and 4-ethynylphenols reported by these authors cannot be correct with absorptions claimed at 2360 and 1705 cm−1; however, the NMR data appear to be correct.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvV2jtr4%3D&md5=44d846cc537cc860877850fde2841459CAS | 17278167PubMed |
[13] R. Bloch, P. Orvane, Tetrahedron Lett. 1981, 22, 3597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XltFKgsQ%3D%3D&md5=981095a74953e7877f5f5b0df179eddeCAS |
[14] V. Franzen, in Friedel-Crafts and Related Reactions (Ed. G. A. Olah ) 1964, Vol. 2, pp. 413–476 (Wiley Interscience: New York, NY).
[15] A. Arcadi, S. Cacchi, M. Del Rosario, G. Fabrizi, F. Marimelli, J. Org. Chem. 1996, 61, 9280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xntlerurw%3D&md5=99124ed0fb5f067bf42b6dc8f6ea7c03CAS |
[16] (a) A. S. K. Hashmi, E. Enns, T. M. Frost, S. Schäfer, W. Frey, F. Rominger, Synthesis 2008, 2707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12hsrbI&md5=b851645aebeecc7af99b615540cdff1bCAS |
(b) H. Huang, Y. Zhou, H. Liu, Beilstein J. Org. Chem. 2011, 7, 897.
| Crossref | GoogleScholarGoogle Scholar |
[17] G. W. Kabalka, L.-L. Zhou, L. Wang, R. M. Pagni, Tetrahedron 2006, 62, 857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCiurnJ&md5=3e49b1c3d2804b28ade0b30048808ad7CAS |
[18] R. Koch, H. M. Berstermann, C. Wentrup, J. Org. Chem. 2014, 79, 65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFegsrjK&md5=d1cbd85be67f43ea0f3b5481e5cecca7CAS | 24328255PubMed |
[19] T. Visser, J. H. van der Maas, J. Chem. Soc., Perkin Trans. 2 1988, 1649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlCmtLc%3D&md5=c13bf3f3c8a36afcb71c873c01ff2c68CAS |
[20] R. J. Abraham, M. Reid, J. Chem. Soc., Perkin Trans. 2 2002, 1081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFSqtLg%3D&md5=f7e8a7e12eb055bb9042c381b9ff114bCAS |
[21] S. F. Nielsen, A. Kharazmi, S. B. Christensen, Bioorg. Med. Chem. 1998, 6, 937.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVans74%3D&md5=f9eada7eef89fcd7028290db26ee5039CAS | 9730229PubMed |