Enhanced Squaraine Rotaxane Endoperoxide Chemiluminescence in Acidic Alcohols
Evan M. Peck A , Allen G. Oliver A and Bradley D. Smith A BA Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA.
B Corresponding author. Email: smith.115@nd.edu
Australian Journal of Chemistry 68(9) 1359-1364 https://doi.org/10.1071/CH15196
Submitted: 17 April 2015 Accepted: 30 April 2015 Published: 27 May 2015
Abstract
Squaraine rotaxane endoperoxides (SREPs) are storable chemiluminescent compounds that undergo a clean cycloreversion reaction that releases singlet oxygen and emits near-infrared light when warmed to body temperature. This study examined the effect of solvent on SREP chemiluminescence intensity and found that acidic alcohols, such as 2,2,2-trifluoroethanol, α-(trifluoromethyl)benzyl alcohol, and 1,1,1,3,3,3-hexafluoroisopropanol, greatly increased chemiluminescence. In contrast, aprotic solvents, such as trifluoroethylmethyl ether, had no effect. The interlocked rotaxane structure was necessary as no chemiluminescence was observed when the experiments were conducted with samples containing a mixture of the two non-interlocked components (squaraine thread and macrocycle endoperoxide). Spectroscopic analyses of the enhanced SREP chemiluminescent reactions showed a mixture of products. In addition to the expected squaraine rotaxane product caused by cycloreversion of the endoperoxide, a diol derivative was isolated. The results are consistent with an endoperoxide O–O bond cleavage process that is promoted by the hydrogen bonding solvent and produces light emission from a squaraine excited state.
References
[1] E. A. Neal, S. M. Goldup, Chem. Commun. 2014, 50, 5128.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsFCjs78%3D&md5=819ab22241e0a0748bd5da49156585f4CAS |
[2] E. R. Kay, D. A. Leigh, F. Zerbetto, Angew. Chem., Int. Ed. 2007, 46, 72.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlCqtQ%3D%3D&md5=8b5800734047b93fe58017f8e3b1797eCAS |
[3] D. A. Leigh, P. J. Lusby, A. M. Z. Slawin, D. B. Walker, Angew. Chem., Int. Ed. 2005, 44, 4557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVSgtrw%3D&md5=42793d829a29275ea080b1acaafd8e29CAS |
[4] W. R. Browne, B. L. Feringa, Nat. Nanotechnol. 2006, 1, 25.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCisr3F&md5=7c83790cdc17062997699b39d34839b3CAS | 18654138PubMed |
[5] J.-M. Lehn, Chem. Soc. Rev. 2007, 36, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKlu74%3D&md5=f36130b866c810fd8d02bb68c955a226CAS | 17264919PubMed |
[6] R. Klajn, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev. 2010, 39, 2203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFertr4%3D&md5=4b331d98513aac5ade25ae33e645ba3aCAS | 20407689PubMed |
[7] H. Li, Z. Zhu, A. C. Fahrenbach, B. M. Savoie, C. Ke, J. C. Barnes, J. Lei, Y.-L. Zhao, L. M. Lilley, T. J. Marks, M. A. Ratner, J. F. Stoddart, J. Am. Chem. Soc. 2013, 135, 456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12mtL%2FI&md5=196e2fc554c20deda2dc71b8c57137aaCAS | 23163704PubMed |
[8] A. Fernandes, A. Viterisi, F. Coutrot, S. Potok, D. A. Leigh, V. Aucagne, S. Papot, Angew. Chem., Int. Ed. 2009, 121, 6565.
| Crossref | GoogleScholarGoogle Scholar |
[9] E. Arunkumar, C. C. Forbes, B. C. Noll, B. D. Smith, J. Am. Chem. Soc. 2005, 127, 3288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtl2ntr0%3D&md5=a6d72ca14d844c7908be7839991db3b7CAS | 15755140PubMed |
[10] M. R. Craig, M. G. Hutchings, T. D. W. Claridge, H. L. Anderson, Angew. Chem., Int. Ed. 2001, 40, 1071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVCiu7Y%3D&md5=147e3d6a7a7a68bc401fb95135a0bc12CAS |
[11] J. E. H. Buston, J. R. Young, H. L. Anderson, Chem. Commun. 2000, 905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFSltLc%3D&md5=94562283473c577c90894f548b92db13CAS |
[12] T. Oku, Y. Furusho, T. Takata, Org. Lett. 2003, 5, 4923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1ajsrg%3D&md5=f43ac04c5f1fe14f6b0b266e8682da54CAS | 14682730PubMed |
[13] C. B. Caputo, K. Zhu, V. N. Vukotic, S. J. Loeb, D. W. Stephan, Angew. Chem., Int. Ed. 2013, 52, 960.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslejtLjE&md5=088cb5148bde556d961b628c8b79febbCAS |
[14] Y. Suzaki, K. Shimada, E. Chihara, T. Saito, Y. Tsuchido, K. Osakada, Org. Lett. 2011, 13, 3774.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFSnu74%3D&md5=d55c17579ed2c33c5620fd8f5d398ea5CAS | 21711007PubMed |
[15] J. Berná, M. Alajarín, R.-A. Orenes, J. Am. Chem. Soc. 2010, 132, 10741.
| Crossref | GoogleScholarGoogle Scholar | 20681706PubMed |
[16] D. M. D’Souza, D. A. Leigh, L. Mottier, K. M. Mullen, F. Paolucci, S. J. Teat, S. Zhang, J. Am. Chem. Soc. 2010, 132, 9465.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFyhtbk%3D&md5=c78cdb67fe92b70f6268bcf2342a9230CAS | 20552981PubMed |
[17] J. M. Baumes, J. J. Gassensmith, J. Giblin, J.-J. Lee, A. G. White, W. J. Culligan, W. M. Leevy, M. Kuno, B. D. Smith, Nat. Chem. 2010, 2, 1025.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOrsL3I&md5=552dead8ce5f4daf15725c09c7cbc643CAS | 21107365PubMed |
[18] J. M. Baumes, I. Murgu, A. Oliver, B. D. Smith, Org. Lett. 2010, 12, 4980.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cgs7jJ&md5=9923caa52e50799b099f7a59a9659be7CAS | 20923203PubMed |
[19] K. Cui, X. Xu, H. Zhao, S. T. C. Wong, Luminescence 2008, 23, 292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlahu7bO&md5=23913e5beaf71a438350a4be37af1fa2CAS | 18452141PubMed |
[20] J. A. Prescher, C. H. Contag, Curr. Opin. Chem. Biol. 2010, 14, 80.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qtL0%3D&md5=81cf8c96ff61c6372119319f42a6c330CAS | 19962933PubMed |
[21] A. Roda, M. Guardigli, E. Michelini, M. Mirasoli, TrAC, Trends Anal. Chem. 2009, 28, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlGnu7o%3D&md5=099f9a8f2e05380c5a40fdb3832b805fCAS |
[22] K. A. Zaklika, P. A. Burns, A. P. Schaap, J. Am. Chem. Soc. 1978, 100, 318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhsFWktr0%3D&md5=cbe24801e444a35917056ac2438efaaeCAS |
[23] K. A. Zaklika, T. Kissel, A. L. Thayer, P. A. Burns, A. P. Schaap, Photochem. Photobiol. 1979, 30, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhvFOltLY%3D&md5=d149c031c137904f31b32b0676bf7ec2CAS |
[24] I. Bronstein, B. Edwards, J. C. Voyta, J. Biolumin. Chemilumin. 1989, 4, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt1Olsbo%3D&md5=30ab8bb3dfcbb59aa450a9c0477c093bCAS | 2477995PubMed |
[25] C. G. Collins, J. M. Lee, A. G. Oliver, O. Wiest, B. D. Smith, J. Org. Chem. 2014, 79, 1120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVeqtA%3D%3D&md5=bbf91939df3b9fcd6eda1f8da5cbea40CAS | 24428682PubMed |
[26] J. J. Gassensmith, L. Barr, J. M. Baumes, A. Paek, A. Nguyen, B. D. Smith, Org. Lett. 2008, 10, 3343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvF2hurw%3D&md5=e4661d7e655ca58c5da91ccb39bb7da5CAS | 18582079PubMed |
[27] D. A. Leigh, A. Murphy, J. P. Smart, A. M. Z. Slawain, Angew. Chem., Int. Ed. Engl. 1997, 36, 728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVajtrY%3D&md5=b2b97068d6d2b74f029750aa6fc6d01cCAS |
[28] J. J. Gassensmith, E. Arunkumar, L. Barr, J. M. Baumes, K. M. DiVittorio, J. R. Johnson, B. C. Noll, B. D. Smith, J. Am. Chem. Soc. 2007, 129, 15054.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12gsrfL&md5=169d19bf949968f8d32718702a7fbdc6CAS | 17994746PubMed |
[29] J. J. Gassensmith, J. M. Baumes, B. D. Smith, Chem. Commun. 2009, 6329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yisrbM&md5=0b4af2b59bcc86410e14d6311cc823daCAS |
[30] N. Fu, J. M. Baumes, E. Arunkumar, B. C. Noll, B. D. Smith, J. Org. Chem. 2009, 74, 6462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFChsbw%3D&md5=e17da01cc352a03cfa1d36a8a5d68942CAS | 19639940PubMed |
[31] J.-M. Aubry, C. Pierlot, J. Rigaudy, R. Schmidt, Acc. Chem. Res. 2003, 36, 668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltF2rs7s%3D&md5=5b21ba2010b24b40084f012d124df05aCAS | 12974650PubMed |
[32] R. L. Donkers, M. S. Workentin, J. Am. Chem. Soc. 2004, 126, 1688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFSksw%3D%3D&md5=577b0c4e4ecc2ddade4b0a39249bde0bCAS | 14871099PubMed |
[33] P. Salice, J. Arnbjerg, B. W. Pedersen, R. Toftegaard, L. Beverina, G. A. Pagani, P. R. Ogilby, J. Phys. Chem. A 2010, 114, 2518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCgsLY%3D&md5=3075648a8fc403837cdbe7b78dbdfbe8CAS | 20121177PubMed |
[34] M. Matsumoto, J. Photochem. Photobiol. Chem. 2004, 5, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVGjsrY%3D&md5=4956b467f646ed0d1304e00845928cc3CAS |
[35] S. Xiao, N. Fu, K. Peckham, B. D. Smith, Org. Lett. 2009, 12, 14.
[36] G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=59f548f8f29686b585f885edea91b42eCAS |