Electronic Structure Change in DNA Caused by Base Pair Motions and Its Effect on Charge Transfer in DNA Chains
Wei Liu A B , Jingyao Liu A E , Guohui Zheng B C , Sanhuang Ke C , Maosheng Miao B D and Nicholas Kioussis B EA Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, China.
B Department of Physics and Astronomy, California State University, Northridge, CA, 91330-8268, USA.
C School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
D Beijing Computational Science Research Center, Beijing, 100094, China.
E Corresponding authors. Email: ljy121@jlu.edu.cn; nick.kioussis@csun.edu
Australian Journal of Chemistry 69(3) 300-306 https://doi.org/10.1071/CH15177
Submitted: 12 April 2015 Accepted: 25 July 2015 Published: 25 September 2015
Abstract
One important aspect of carrier transfer in DNA is its coupling with atomic motions. The collective motion of the base pairs can either improve the charge transfer by enhancing the π stacking between the bases, or trap the carriers due to strong coupling. By utilizing a pseudo-helical base pair stack model, we systematically studied the electronic structure and its dependence to geometry changes that represent the important DNA motions, including the translation, the twist and the torsion of the base pairs. Our calculations reveal that the above motions may significantly change the electron structure and affect their transport properties. In order to improve the transport of carriers in DNA so that it can become a prospective material in future electronics, it is necessary to make large changes to the atomic structure. Our calculations of the electronic structure under large geometry variation, including large base pair stacking deformation and the insertion of phenyl rings in the bases, can provide good guidelines for such structural modifications of DNA.
References
[1] J. C. Genereux, J. K. Barton, Chem. Rev. 2010, 110, 1642.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKhsL3F&md5=149ae2b820c571afff1bc806a2335906CAS | 20214403PubMed |
[2] D. Porath, G. Cuniberti, R. Di Felice, Top. Curr. Chem. 2004, 237, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFOhs7k%3D&md5=4734a72fc4690133614c94c98f5e4bdbCAS |
[3] R. G. Endres, D. L. Cox, R. R. P. Singh, Rev. Mod. Phys. 2004, 76, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFKqurg%3D&md5=bfb29922b0feaf628343caea65e2c937CAS |
[4] F. C. Grozema, L. D. A. Siebbeles, Y. A. Berlin, M. A. Ratner, ChemPhysChem 2002, 3, 536.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVWmtbk%3D&md5=3747bbe60175832d61aac6f404982049CAS | 12465494PubMed |
[5] E. Paleček, M. Bartošík, Chem. Rev. 2012, 112, 3427.
| Crossref | GoogleScholarGoogle Scholar | 22372839PubMed |
[6] C. H. Wohlgamuth, M. A. McWilliams, J. D. Slinker, Anal. Chem. 2013, 85, 8634.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlaisbjP&md5=84d0d8851910f064632e93aa503ca5d2CAS | 23964773PubMed |
[7] M. Zwolak, M. Di Ventra, Nano Lett. 2005, 5, 421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aqsLo%3D&md5=5f7c217a041106a631b4373a8444fd32CAS | 15755087PubMed |
[8] F. Boussicault, M. Robert, Chem. Rev. 2008, 108, 2622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlKqtr4%3D&md5=8152e53f3b7dd5a731979449202b99a9CAS | 18563937PubMed |
[9] G. B. Schuster, Acc. Chem. Res. 2000, 33, 253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlKjs7w%3D&md5=8fc06b4d6cd7c5f4771fbe9550d71188CAS | 10775318PubMed |
[10] D. B. Hall, R. E. Holmlin, J. K. Barton, Nature 1996, 382, 731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xlt1ylt7Y%3D&md5=5ffd0be9c315c960d631ea691668ea9fCAS | 8751447PubMed |
[11] R. P. Sinha, D.-P. Häder, Photochem. Photobiol. Sci. 2002, 1, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjslentrk%3D&md5=9abe1c59ae6a63b625bc090110caae3cCAS | 12661961PubMed |
[12] V. Guallar, A. Douhal, M. Moreno, J. M. Lluch, J. Phys. Chem. A 1999, 103, 6251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVOlurs%3D&md5=9e29ad6a00c30668c257aab4490b2344CAS |
[13] A. Adhikary, A. Kumar, S. A. Munafo, D. Khanduri, M. D. Sevilla, Phys. Chem. Chem. Phys. 2010, 12, 5353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvF2jtbg%3D&md5=a527d8c888ebd34d03bf08d9723ed7dbCAS | 21491657PubMed |
[14] S. Steenken, J. Reynisson, Phys. Chem. Chem. Phys. 2010, 12, 9088.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVGiur8%3D&md5=0cbcc071417944d4a909fb1bc786acdcCAS | 20532316PubMed |
[15] S. M. Gasper, G. B. Schuster, J. Am. Chem. Soc. 1997, 119, 12762.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVSktQ%3D%3D&md5=f11e9e11b1e77aba5f1049e11e786759CAS |
[16] Y. A. Lee, A. Durandin, P. C. Dedon, N. E. Geacintov, V. Shafirovich, J. Phys. Chem. B 2008, 112, 1834.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1WjsQ%3D%3D&md5=12407fc7538c7f6c2ba7a0789b2ff3ccCAS | 18211057PubMed |
[17] V. Shafirovich, A. Dourandin, N. E. Geacintov, J. Phys. Chem. B 2001, 105, 8431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVOmsbo%3D&md5=fc148d2ee00621ca22f2aa5fca009e40CAS |
[18] S. Steenken, Chem. Rev. 1989, 89, 503.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitVyms7w%3D&md5=78ab5f9caeda9355e2cca66aa78c9380CAS |
[19] A. Kumar, M. D. Sevilla, J. Phys. Chem. B 2009, 113, 11359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Snurc%3D&md5=a5e033928da81891b0bd6e0f37953dd5CAS | 19485319PubMed |
[20] D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature 2000, 403, 635.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1Oqsbo%3D&md5=7761aa16053e1ed5840bb960fc259a88CAS | 10688194PubMed |
[21] H.-W. Fink, C. Schönenberger, Nature 1999, 398, 407.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFGlu74%3D&md5=4b06422e7d3c3ffc1cd2bcafbd338767CAS | 10201370PubMed |
[22] Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, N. P. Ong, Phys. Rev. Lett. 2002, 89, 198102.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38notleisw%3D%3D&md5=2c2e652f259049c6d0cc5dc380f609e4CAS | 12443154PubMed |
[23] X. Guo, A. A. Gorodetsky, J. Hone, J. K. Barton, C. Nuckolls, Nat. Nanotechnol. 2008, 3, 163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFKgtro%3D&md5=9605d505eaf2c6ab5b80a96e843fbe43CAS | 18654489PubMed |
[24] J. D. Slinker, N. B. Muren, S. E. Renfrew, J. K. Barton, Nat. Chem. 2011, 3, 228.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Wru7g%3D&md5=a6de1d971361168e6b64470594e4add5CAS | 21336329PubMed |
[25] B. Giese, Acc. Chem. Res. 2000, 33, 631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVGmtbg%3D&md5=8a25a3afddba9a37e0f95e0f9c2c2630CAS | 10995201PubMed |
[26] S. Delaney, J. K. Barton, J. Org. Chem. 2003, 68, 6475.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Kmtro%3D&md5=326aa3515e108973b07061f3e149c327CAS | 12919006PubMed |
[27] K. Siriwong, A. A. Voityuk, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 780.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCmsr%2FI&md5=0370505a49c914cb0c6f4e982f0f1fe4CAS |
[28] S. S. Mallajosyula, S. K. Pati, J. Phys. Chem. Lett. 2010, 1, 1881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvF2qt7Y%3D&md5=c7e0509ef5830ac1042489ec584a334bCAS |
[29] H. Liu, J. Gao, S. R. Lynch, Y. D. Saito, L. Maynard, E. T. Kool, Science 2003, 302, 868.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Cmtro%3D&md5=8801cf3fc189c75e4b187b2363aa20e1CAS | 14593180PubMed |
[30] S. R. Lynch, H. Liu, J. Gao, E. T. Kool, J. Am. Chem. Soc. 2006, 128, 14704.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2jsLzO&md5=16e80dc9837bd5a8f4c7ec422f426a8cCAS | 17090058PubMed |
[31] G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xms1Whu7Y%3D&md5=78d66642658fbd059017c60d583fa42aCAS |
[32] P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
| Crossref | GoogleScholarGoogle Scholar |
[33] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCgsbs%3D&md5=e2557f66801ae4bc524755e675b3410eCAS | 10062328PubMed |
[34] A. D. Becke, J. Chem. Phys. 1992, 96, 2155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtFeqtb8%3D&md5=af69a7dfdd469af672197f464219e8e6CAS |
[35] D. R. Hamann, Phys. Rev. Lett. 1996, 76, 660.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFOqtw%3D%3D&md5=1202af0a067be3d06622b4f642382b9bCAS | 10061515PubMed |
[36] B. Hammer, K. W. Jacobsen, J. K. Nørskov, Phys. Rev. Lett. 1993, 70, 3971.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltVeqsbk%3D&md5=2b9e65415ee1bb2a6f502e141e9c379eCAS | 10054012PubMed |
[37] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvFyks7c%3D&md5=f4239cc52df4585609778b462d01f715CAS |
[38] P. H. T. Philipsen, G. te Velde, E. J. Baerends, Chem. Phys. Lett. 1994, 226, 583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXms1CntLw%3D&md5=6358c0e00ab04d0f029a58ab21336f9dCAS |
[39] E. I. Proynov, E. Ruiz, A. Vela, D. R. Salahub, Int. J. Quantum Chem. 1995, 56, 61.
| Crossref | GoogleScholarGoogle Scholar |
[40] J. Ladik, S. Suhai, Int. J. Quantum Chem. 1980, 18, 181.
| Crossref | GoogleScholarGoogle Scholar |
[41] S. Arnott, D. W. L. Hukins, Biochem. Biophys. Res. Commun. 1972, 47, 1504.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XkslWmt7c%3D&md5=bbd9fa04690418ed642aba9d2492a3eeCAS | 5040245PubMed |
[42] E. Rengifo, G. Murillo, J. C. Arce, J. Appl. Phys. 2013, 113, 173703.
| Crossref | GoogleScholarGoogle Scholar |
[43] H. Wallmeier, N. Windhab, G. Quinkert, “A Dynamical Supramolecular System for Medicinal Chemistry – A Step Towards Contiguous Chemical Spaces.” n.d. Available at: http://www.beilstein-institut.de/download/634/15_wallmeier.pdf (accessed 1 September 2015).
[44] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, 2009 (Gaussian, Inc.: Wallingford CT).