Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Adrien Albert Award: How to Mine Chemistry Space for New Drugs and Biomedical Therapies

David Winkler
+ Author Affiliations
- Author Affiliations

Cell Biology Group, Biomedical Materials Program, CSIRO Manufacturing Flagship, Bag 10, Clayton South MDC, Vic. 3169; Monash Institute of Pharmaceutical Sciences, Parkville, Vic. 3052; and Latrobe Institute for Molecular Science, Bundoora, Vic. 3108, Australia. Email: dave.winkler@csiro.au

Australian Journal of Chemistry 68(8) 1174-1182 https://doi.org/10.1071/CH15172
Submitted: 10 April 2015  Accepted: 21 April 2015   Published: 14 May 2015

Abstract

It is clear that the sizes of chemical, ‘drug-like’, and materials spaces are enormous. If scientists working in established therapeutic, and newly established regenerative medicine fields are to discover better molecules or materials, they must find better ways of probing these enormous spaces. There are essentially five ways that this can be achieved: combinatorial and high throughput synthesis and screening approaches; fragment-based methods; de novo molecular design, design of experiments, diversity libraries; supramolecular approaches; evolutionary approaches. These methods either synthesise materials and screen them more quickly, or constrain chemical spaces using biology or other types of ‘fitness functions’. High throughput experimental approaches cannot explore more than a minute part of chemical space. We are nevertheless entering into an era that is data dominated. High throughput experiments, robotics, automated crystallographic beam lines, combinatorial and flow synthesis, high content screening, and the ‘omics’ technologies are providing a flood of data, and efficient methods for extracting meaning from it are essential. This paper describes how new developments in mathematics have provided excellent, robust computational modelling tools for exploring large chemical spaces, for extracting meaning from large datasets, for designing new bioactive agents and materials, and for making truly predictive, quantitative models of the properties of molecules and materials for use in therapeutic and regenerative medicine. We describe these broadly applicable modelling tools and provide examples of their application to serum free stem cell culture, pathogen resistant polymers for implantable devices, new markers and biological mechanisms derived from mathematical analyses of gene array data, and pharmacokinetically important physicochemical properties of small molecules. We also discuss biologically conserved peptide motifs as a design framework for small molecule drugs and give examples of the application of this concept to drug design.


References

[1]  A. Albert, Nature 1950, 165, 12.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG3c%2FhvVGgug%3D%3D&md5=20742bc7e0682c997991e4a43608b073CAS | 15408906PubMed |

[2]  A. Albert, Selective Toxicity, with Special Reference to Chemotherapy 1951 (Methuen: London).

[3]  A. Albert, Nature 1958, 182, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXhvVymug%3D%3D&md5=afe2fe77ee30676d1a56c6a3d2ef9bceCAS | 13577867PubMed |

[4]  A. Albert, Selective Toxicity, 2nd edn 1960 (Methuen: London).

[5]  T. Le, V. C. Epa, F. R. Burden, D. A. Winkler, Chem. Rev. 2012, 112, 2889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVyisA%3D%3D&md5=b1864c63d05b44766ceb05223091d140CAS | 22251444PubMed |

[6]  B. K. Shoichet, Nat. Chem. 2013, 5, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCktbzK&md5=a7db0a7a08da5d734160da72156e7b4dCAS | 23247169PubMed |

[7]  F. R. Burden, B. S. Rosewarne, D. A. Winkler, Chemom. Intell. Lab. Syst. 1997, 38, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsl2gurs%3D&md5=87f6df59e2e41da14cc69c86aa73f3aeCAS |

[8]  D. Winkler, F. Burden, J. Halley, Drugs Future 2007, 32, 26.

[9]  F. R. Burden, M. G. Ford, D. C. Whitley, D. A. Winkler, J. Chem. Inf. Comput. Sci. 2000, 40, 1423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFOitLo%3D&md5=da23f507e1080e08060875586736009aCAS | 11128101PubMed |

[10]  F. R. Burden, M. J. Polley, D. A. Winkler, J. Chem. Inf. Model. 2009, 49, 710.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslyjsbw%3D&md5=141e7a9c057b6cc50b2cbae575b88eddCAS | 19434903PubMed |

[11]  F. R. Burden, D. A. Winkler, J. Med. Chem. 1999, 42, 3183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFGhsro%3D&md5=5bd5a36d4ebde2ba3254abf6a7aad61fCAS | 10447964PubMed |

[12]  D. A. Winkler, Mol. Biotechnol. 2004, 27, 139.
         | Crossref | GoogleScholarGoogle Scholar | 15208456PubMed |

[13]  D. A. Winkler, F. R. Burden, Mol. Simul. 2000, 24, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvF2jtLc%3D&md5=c51d4abc1cfc8a51130b5a1a8d708ee0CAS |

[14]  F. R. Burden, D. A. Winkler, QSAR Comb. Sci. 2009, 28, 1092.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yrsr7K&md5=7f3ccbc97a63b4223ef9f0d3b9e0bbc0CAS |

[15]  F. R. Burden, D. A. Winkler, QSAR Comb. Sci. 2009, 28, 645.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFeit74%3D&md5=c26d73ddee271601db240b65d7028089CAS |

[16]  R. J. Hill, L. D. Graham, K. A. Turner, L. Howell, D. Tohidi-Esfahani, R. Fernley, J. Grusovin, B. Ren, P. Pilling, L. Lu, T. Phan, G. O. Lovrecz, M. Pollard, A. Pawlak-Skrzecz, V. A. Streltsov, T. S. Peat, D. A. Winkler, M. C. Lawrence, Adv. Insect Physiol. 2012, 43, 299.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  W. Birru, R. T. Fernley, L. D. Graham, J. Grusovin, R. J. Hill, A. Hofmann, L. Howell, P. J. James, K. E. Jarvis, W. M. Johnson, D. A. Jones, C. Leitner, A. J. Liepa, G. O. Lovrecz, L. Lu, R. H. Nearn, B. J. O’Driscoll, T. Phan, M. Pollard, K. A. Turner, D. A. Winkler, Bioorg. Med. Chem. 2010, 18, 5647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlGhurs%3D&md5=935e6a0adb8e77a7e0351bd8097aa343CAS | 20619664PubMed |

[18]  A. Ali, T. M. Altamore, M. Bliese, P. Fisara, A. J. Liepa, A. G. Meyer, O. Nguyen, R. M. Sargent, D. G. Sawutz, D. A. Winkler, K. N. Winzenberg, A. Ziebell, Bioorg. Med. Chem. Lett. 2008, 18, 252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Squw%3D%3D&md5=6c87cea6889f506cf3d21aa7d64219c0CAS | 18006308PubMed |

[19]  A. Ali, M. Bliese, J. A. M. Rasmussen, R. M. Sargent, S. Saubern, D. G. Sawutz, J. S. Wilkie, D. A. Winkler, K. N. Winzenberg, R. C. J. Woodgate, Bioorg. Med. Chem. Lett. 2007, 17, 993.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12qsbY%3D&md5=190d0cd3c6669b7cb689caf4d23ba622CAS | 17150358PubMed |

[20]  J. A. Carmichael, M. C. Lawrence, L. D. Graham, P. A. Pilling, V. C. Epa, L. Noyce, G. Lovrecz, D. A. Winkler, A. Pawlak-Skrzecz, R. E. Eaton, G. N. Hannan, R. J. Hill, J. Biol. Chem. 2005, 280, 22258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksl2htrY%3D&md5=90d8f2939d84ae6b967e881f98ffefd2CAS | 15809296PubMed |

[21]  F. Ismail, D. A. Winkler, ChemMedChem 2014, 9, 885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXms1ajs7Y%3D&md5=ded7a40259a47e71505a1ce6cc2ca4eaCAS | 24760779PubMed |

[22]  A. Tarasova, D. N. Haylock, L. Meagher, C. L. Be, J. White, S. K. Nilsson, J. Andrade, K. Cartledge, D. A. Winkler, ChemMedChem 2013, 8, 763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslWrt7g%3D&md5=4f57d5c5a5eaa1594d1ac4efb93cd171CAS | 23554275PubMed |

[23]  A. Tarasova, D. A. Winkler, ChemMedChem 2009, 4, 2002.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWrs7zI&md5=2261460ece8dd7d9fbb602d4a3c32006CAS | 19810084PubMed |

[24]  A. Tarasova, D. Haylock, D. Winkler, Cytokine Growth Factor Rev. 2011, 22, 231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2rsrbE&md5=1d853420880382454e30afd7a448cf35CAS | 21975328PubMed |

[25]  D. A. Winkler, F. R. Burden, Mol. Biosyst. 2012, 8, 913.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVSmsbo%3D&md5=97746da100e1e72dc75f1c9f2da45125CAS | 22282302PubMed |

[26]  J. D. Halley, K. Smith-Miles, D. A. Winkler, T. Kalkan, S. Huang, A. Smith, Stem Cell Res. 2012, 8, 324.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Ont74%3D&md5=3344445614b96663a14ce8dc4676de5bCAS | 22169460PubMed |

[27]  J. D. Halley, D. A. Winkler, F. R. Burden, Stem Cell Res. 2008, 1, 157.
         | Crossref | GoogleScholarGoogle Scholar | 19383397PubMed |

[28]  O. E. Hutt, S. Saubern, D. A. Winkler, Bioorg. Med. Chem. 2011, 19, 5903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyntbvF&md5=f1276c7dec941c5105664ccc0d2b869eCAS | 21889349PubMed |

[29]  V. C. Epa, J. Yang, Y. Mei, A. L. Hook, R. Langer, D. G. Anderson, M. C. Davies, M. R. Alexander, D. A. Winkler, J. Mater. Chem. 2012, 22, 20902.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGqsLvP&md5=026d6a6243834d7725deb91ddbe646aaCAS | 24092955PubMed |

[30]  T. C. Le, X. Mulet, F. R. Burden, D. A. Winkler, Mol. Pharmaceutics 2013, 10, 1368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsVymt7Y%3D&md5=318f28e42f59c2f6ed948f18f8cf3fa3CAS |

[31]  S. Marchesan, L. Waddington, C. D. Easton, D. A. Winkler, L. Goodall, J. Forsythe, P. G. Hartley, Nanoscale 2012, 4, 6752.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2qsrbO&md5=320186073d3da9a20047696ead2e9fc1CAS | 22955637PubMed |

[32]  A. D. Celiz, J. G. W. Smith, R. Langer, D. G. Anderson, D. A. Winkler, D. A. Barrett, M. C. Davies, L. E. Young, C. Denning, M. R. Alexander, Nat. Mater. 2014, 13, 570.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXot1ylsLY%3D&md5=c700c37ca4cc7b7364846b42cd9f0e25CAS | 24845996PubMed |

[33]  H. Autefage, E. Gentleman, E. Littmann, M. A. B. Hedegaard, T. Von Erlach, M. O’Donnell, F. R. Burden, D. A. Winkler, M. M. Stevens, Proc. Natl. Acad. Sci. USA 2015, 112, 4280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvFaqurc%3D&md5=9d4023ed2db29d94ce022683800d5ec6CAS | 25831522PubMed |

[34]  W. B. Wan, L. L. Li, Z. B. Zhao, H. Hu, X. J. Hao, D. A. Winkler, L. C. Xi, T. C. Hughes, J. S. Qiu, Adv. Funct. Mater. 2014, 24, 4915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslamsr8%3D&md5=1438bc92de059aac0f83224ce2cc291aCAS |

[35]  See pp. 85–96 in V. C. Epa, D. A. Winkler, L. Tran, Computational Nanotoxicology: Adverse Effects of Engineered Nanoparticles 2012 (London: Academic Press).

[36]  V. C. Epa, F. R. Burden, C. Tassa, R. Weissleder, S. Shaw, D. A. Winkler, Nano Lett. 2012, 12, 5808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOhsr7L&md5=66cb6dfc2493a754a8a3471293a2736fCAS | 23039907PubMed |

[37]  D. A. Winkler, F. R. Burden, B. Yan, R. Weissleder, C. Tassa, S. Shaw, V. C. Epa, SAR QSAR Environ. Res. 2014, 25, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlCksbg%3D&md5=75859e0dc153e97c12dd3ec3de5bf438CAS | 24625316PubMed |

[38]  D. A. Winkler, E. Mombelli, A. Pietroiusti, L. Tran, A. Worth, B. Fadeel, M. J. McCall, Toxicology 2013, 313, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWit73J&md5=ec63dd66849c8b09e3b65c4d77ea27eaCAS | 23165187PubMed |

[39]  P. Ung, D. A. Winkler, J. Med. Chem. 2011, 54, 1111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sltbw%3D&md5=1c210586dfabad1adc7eb0fee5018769CAS | 21275407PubMed |

[40]  G. Wijffels, W. M. Johnson, A. J. Oakley, K. Turner, V. C. Epa, S. J. Briscoe, M. Polley, A. J. Liepa, A. Hofmann, J. Buchardt, C. Christensen, P. Prosselkov, B. P. Dalrymple, P. F. Alewood, P. A. Jennings, N. E. Dixon, D. A. Winkler, J. Med. Chem. 2011, 54, 4831.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1agsb4%3D&md5=cced8060d56680869c0cf2e131105aebCAS | 21604761PubMed |

[41]  C. Hansch, T. Fujita, J. Am. Chem. Soc. 1964, 86, 1616.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXptF2gsQ%3D%3D&md5=744a7bb7eb0666d0d1295b06506e0d12CAS |

[42]  C. Hansch, P. P. Maloney, T. Fujita, Nature 1962, 194, 178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktFaltLg%3D&md5=af0d3ac6cb6635f9f889f133a1abbfedCAS |

[43]  C. Hansch, T. Fujita, ACS Symp. Ser. 1995, 606, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1ehsLY%3D&md5=86868de9bb685faa1a8777dfa4022e84CAS |

[44]  F. R. Burden, D. A. Winkler, J. Chem. Inf. Comput. Sci. 1999, 39, 236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFWksLY%3D&md5=ae4515eebed23fbf2a114b3ec369cad6CAS |

[45]  M. A. T. Figueiredo, IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1150.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  D. Winkler, Drug Discov. Today 2001, 6, 1198.
         | Crossref | GoogleScholarGoogle Scholar | 11722868PubMed |

[47]  F. R. Burden, D. A. Winkler, in Artificial Neural Networks: Methods and Applications (Ed. D. Livingston) 2009, Methods in Molecular Biology Vol. 458, 25–44 (Humana Press: Totowa, NJ).

[48]  H. T. Kiiveri, BMC Bioinf. 2008, 9, 195.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  M. J. Polley, D. A. Winkler, F. R. Burden, J. Med. Chem. 2004, 47, 6230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVyqsro%3D&md5=15b1005c1dc0a3cbfe3099d2c729191eCAS | 15566293PubMed |

[50]  M. Salahinejad, T. C. Le, D. A. Winkler, Mol. Pharmaceutics 2013, 10, 2757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlOgs7s%3D&md5=ba0ee1504b9f78e10787ecfb7bce25d5CAS |

[51]  T. C. Le, M. Ballard, P. Casey, M. S. Liu, D. A. Winkler, Mol. Inf. 2015, 34, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGku7zI&md5=8b3f800888817d174d9a385fda7ed40eCAS |

[52]  P. J. Meunier, C. Roux, E. Seeman, S. Ortolani, J. E. Badurski, T. D. Spector, J. Cannata, A. Balogh, E.-M. Lemmel, S. Pors-Nielsen, R. Rizzoli, H. K. Genant, J.-Y. Reginster, N. Engl. J. Med. 2004, 350, 459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Snsw%3D%3D&md5=3026171a1b9dfcf7a7922fd09a710a87CAS | 14749454PubMed |

[53]  J. Y. Reginster, E. Seeman, M. C. De Vernejoul, S. Adami, J. Compston, C. Phenekos, J. P. Devogelaer, M. Diaz Curiel, A. Sawicki, S. Goemaere, O. H. Sorensen, D. Felsenberg, P. J. Meunier, J. Clin. Endocrinol. Metab. 2005, 90, 2816.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Wgt78%3D&md5=ffb4861c3869cec85c9e710eb4bc8e9aCAS | 15728210PubMed |

[54]  Y. H. Huh, M. Noh, F. R. Burden, J. C. Chen, D. A. Winkler, J. L. Sherley, Stem Cell Res. 2015, 14, 144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovF2lsw%3D%3D&md5=f1fa5f8ad7d7083c5b88ce912f6ed317CAS | 25636161PubMed |

[55]  Y. H. Huh, J. L. Sherley, Stem Cells 2011, 29, 1620.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2itbzI&md5=6f2ecc76390fc0df43bff6536165aaceCAS | 21905168PubMed |

[56]  X. Mulet, D. F. Kennedy, C. E. Conn, A. Hawley, C. J. Drummond, Int. J. Pharm. 2010, 395, 290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2it7Y%3D&md5=41f9a940cb7a7ea409d500eb40edc908CAS | 20580796PubMed |

[57]  T. C. Le, C. E. Conn, F. R. Burden, D. A. Winkler, Cryst. Growth Des. 2013, 13, 1267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVemt78%3D&md5=d79cbcd6e8ca9fc570d4896bd9c63074CAS |

[58]  T. C. Le, C. E. Conn, F. R. Burden, D. A. Winkler, Cryst. Growth Des. 2013, 13, 3126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotFyitLg%3D&md5=cdbb653a66b38fcc2af5b3363d0ae639CAS |

[59]  A. L. Hook, C. Y. Chang, J. Yang, J. Luckett, A. Cockayne, S. Atkinson, Y. Mei, R. Bayston, D. J. Irvine, R. Langer, D. G. Anderson, P. Williams, M. C. Davies, M. R. Alexander, Nat. Biotechnol. 2012, 30, 868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOgsbzI&md5=88a62f1cefc755990459b7c473406719CAS | 22885723PubMed |

[60]  V. C. Epa, A. L. Hook, C. Chang, J. Yang, R. Langer, D. G. Anderson, P. Williams, M. C. Davies, M. R. Alexander, D. A. Winkler, Adv. Funct. Mater. 2014, 24, 2085.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOhsLnM&md5=40b1c571f5c06de952b03a573a8204d1CAS |

[61]  J. Yang, Y. Mei, A. L. Hook, M. Taylor, A. J. Urquhart, S. R. Bogatyrev, R. Langer, D. G. Anderson, M. C. Davies, M. R. Alexander, Biomaterials 2010, 31, 8827.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1egsLzF&md5=35171e13bba7a9297ec37ecc814bd2f0CAS | 20832108PubMed |

[62]  V. Neduva, R. B. Russell, Nucleic Acids Res. 2006, 34, W350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1yitLs%3D&md5=197a8ea50025a435901305380e8a1e4eCAS | 16845024PubMed |

[63]  C. H. Reynolds, S. D. Bembenek, B. A. Tounge, Bioorg. Med. Chem. Lett. 2007, 17, 4258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVKntbo%3D&md5=3c799866e7e71f1f7899d7feb3afc7e5CAS | 17532632PubMed |

[64]  M. M. Hann, A. R. Leach, G. Harper, J. Chem. Inf. Comput. Sci. 2001, 41, 856.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFynt7w%3D&md5=18b7e9da72e50540f7d55e8fc87078b3CAS | 11410068PubMed |

[65]  S. Byers, E. Amaya, S. Munro, O. Blaschuk, Dev. Biol. 1992, 152, 411.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVCnsrg%3D&md5=238e46fd01cd10b8a154911cbfd1f24fCAS | 1322849PubMed |

[66]  S. M. Burden-Gulley, T. J. Gates, S. E. L. Craig, S. F. Lou, S. A. Oblander, S. Howell, M. Gupta, S. M. Brady-Kalnay, Peptides 2009, 30, 2380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKntLvI&md5=a471e25b6801a67764ff1032c125b162CAS | 19765627PubMed |

[67]  S. E. Cwirla, P. Balasubramanian, D. J. Duffin, C. R. Wagstrom, C. M. Gates, S. C. Singer, A. M. Davis, R. L. Tansik, L. C. Mattheakis, C. M. Boytos, P. J. Schatz, D. P. Baccanari, N. C. Wrighton, R. W. Barrett, W. J. Dower, Science 1997, 276, 1696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvV2mtrw%3D&md5=765f9350eb72e2d32978a8da7c62e59aCAS | 9180079PubMed |

[68]  B. P. Dalrymple, K. Kongsuwan, G. Wijffels, N. E. Dixon, P. A. Jennings, Proc. Natl. Acad. Sci. USA 2001, 98, 11627.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt12jsL4%3D&md5=48d6ac6c95c694b1370958a17fd2eb7dCAS | 11573000PubMed |

[69]  R. V. Devi, S. S. Sathya, M. S. Coumar, Appl. Soft Comput. 2015, 27, 543.
         | Crossref | GoogleScholarGoogle Scholar |

[70]  M. J. Sorich, R. A. McKinnon, J. O. Miners, D. A. Winkler, P. A. Smith, J. Med. Chem. 2004, 47, 5311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslejurs%3D&md5=ae6c5768d2f8c056602a49492e4df262CAS | 15456275PubMed |

[71]  M. J. Sorich, J. O. Miners, R. A. McKinnon, D. A. Winkler, F. R. Burden, P. A. Smith, J. Chem. Inf. Comput. Sci. 2003, 43, 2019.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Ohsbs%3D&md5=1adbfed5d565ac0b8615c5f848c88bb8CAS | 14632453PubMed |

[72]  M. J. Sorich, P. A. Smith, D. A. Winkler, F. R. Burden, R. A. McKinnon, J. O. Miners, Drug Metab. Rev. 2003, 35, 167.

[73]  A. L. Hopkins, Nat. Chem. Biol. 2008, 4, 682.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Kgs7fK&md5=c2b1283e4791c6205ec672b2af72844fCAS | 18936753PubMed |

[74]  M. A. Yildirim, K. I. Goh, M. E. Cusick, A. L. Barabasi, M. Vidal, Nat. Biotechnol. 2007, 25, 1119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFagt7rO&md5=914b83e382df20d749fa0cefc88807c3CAS | 17921997PubMed |