Simultaneous Observation of Triplet and Singlet Cyclopentane-1,3-diyl Diradicals in the Intersystem Crossing Process
Takemi Mizuno A , Manabu Abe A B D and Noriaki Ikeda CA Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan.
B Japan Science and Technology Agency (JST)-CREST, K’s Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.
C Department of Materials Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Gosyo Kaidocho, Sakyo-ku, Kyoto 606-8585, Japan.
D Corresponding author. Email: mabe@hiroshima-u.ac.jp
Australian Journal of Chemistry 68(11) 1700-1706 https://doi.org/10.1071/CH15062
Submitted: 5 February 2015 Accepted: 1 March 2015 Published: 1 April 2015
Abstract
Intersystem crossing is an important chemical process. In this study, the rate constant of intersystem crossing, kISC ~3 × 107 s–1, for cyclopentane-1,3-diyl diradicals was unequivocally determined by the simultaneous observation of the decay process of the triplet diradical (λobs = 320 nm) and the growth process of the corresponding singlet diradical (λobs = 560 nm). The two spin states were directly observed using a long-lived singlet 2,2-dimethoxy-1,3-diphenylcyclopentane-1,3-diyl diradical.
References
[1] (a) Diradicals (Ed. W. T. Borden) 1982 (John Wiley & Sons: New York, NY).(b) Kinetics and Spectroscopy of Carbenes and Biradials (Ed. M. S. Platz) 1990 (Plenum Press: New York, NY).
(c) M. Abe, J. Ye, M. Mishima, Chem. Soc. Rev. 2012, 41, 3808.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Abe, Chem. Rev. 2013, 113, 7011.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) L. Salem, C. Rowland, Angew. Chem. Int. Ed. Engl. 1972, 11, 92.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtFOmtLg%3D&md5=14cab7114f6cc086b2941ea871327732CAS |
(b) J. Michl, J. Am. Chem. Soc. 1996, 118, 3568.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Doubleday, N. J. Turro, J.-F. Wang, Acc. Chem. Res. 1989, 22, 199.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. F. Minaev, Russ. Chem. Rev. 2007, 76, 988.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. Michl, Z. Havlas, Pure Appl. Chem. 1997, 69, 785.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) S. S. Shaik, J. Am. Chem. Soc. 1979, 101, 3184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltVOlsro%3D&md5=84c8a77bc6c5f5cbaa1c5d1da5c4ae66CAS |
(b) J. C. Scaiano, Tetrahedron 1982, 38, 819.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Adam, S. Grabowski, R. M. Wilson, Acc. Chem. Res. 1990, 23, 165.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. G. Griesbeck, H. Mauder, S. Standtmüller, Acc. Chem. Res. 1994, 27, 70.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. G. Kutateladze, J. Am. Chem. Soc. 2001, 123, 9279.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. G. Griesbeck, M. Abe, S. Bondock, Acc. Chem. Res. 2004, 37, 919.
| Crossref | GoogleScholarGoogle Scholar |
[4] F. Kita, W. Adam, P. Jordan, W. M. Nau, J. Wirz, J. Am. Chem. Soc. 1999, 121, 9265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt12nsbo%3D&md5=c21130cfa5913d2025dde11eae94b01dCAS |
[5] (a) M. Abe, W. Adam, T. Heidenfelder, W. M. Nau, X. Zhang, J. Am. Chem. Soc. 2000, 122, 2019.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFWrtr0%3D&md5=e10b0dd7faa15bec01fa7145ca6c853aCAS |
(b) M. Abe, W. Adam, M. Hara, M. Hattori, T. Majima, M. Nojima, K. Tachibana, S. Tojo, J. Am. Chem. Soc. 2002, 124, 6540.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Abe, W. Adam, W. T. Borden, M. Hattori, D. A. Hrovat, M. Nojima, K. Nozaki, J. Wirz, J. Am. Chem. Soc. 2004, 126, 574.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Yamada, T. Akasaka, Bull. Chem. Soc. Jpn. 2014, 87, 1289.
| Crossref | GoogleScholarGoogle Scholar |
[6] W. J. Leigh, D. R. Arnold, J. Chem. Soc. Chem. Commun. 1980, 406.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtlyntb8%3D&md5=674477089b25a7d0b37d03c3e0acae0cCAS |
[7] M. Abe, S. Watanabe, H. Tamura, S. Boinapally, K. Kanahara, Y. Fujiwara, J. Org. Chem. 2013, 78, 1940.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGktbvE&md5=4db70a199242accf106645a95f3394ffCAS | 22985271PubMed |
[8] J.-P. Anselme, J. Org. Chem. 1967, 32, 3716.
| Crossref | GoogleScholarGoogle Scholar |
[9] M. Tiecco, L. Testaferri, M. Tingoli, D. Bartoli, F. Marini, J. Org. Chem. 1991, 56, 5207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFWgsb8%3D&md5=cd9d0417e6b9d18dcc539dcaff759079CAS |
[10] W. Adam, H. M. Harrer, W. M. Nau, K. Peters, J. Org. Chem. 1994, 59, 3786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFKkurY%3D&md5=2e39f97195aa2a4fb749d954d7d30d3aCAS |
[11] S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XosFSitg%3D%3D&md5=21d27225cfca0f37365e12293ee9a792CAS |
[12] (a) R. F. C. Claridge, H. J. Fischer, J. Phys. Chem. 1983, 87, 1960.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktlOqtro%3D&md5=51b31ac8af8c0cfc9626a943915da1a5CAS |
(b) K. Tokumura, T. Ozaki, H. Nosaki, Y. Saigusa, M. Itoh, J. Am. Chem. Soc. 1991, 113, 4974.
| Crossref | GoogleScholarGoogle Scholar |
[13] R. V. Bensasson, J.-C. Gramain, J. Chem. Soc., Faraday Trans. I 1980, 76, 1801.
| Crossref | GoogleScholarGoogle Scholar |
[14] See Ch. 5, pp. 265–317 in N. J. Turro, V. Ramamurthy, J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules 2010 (University Science Books: Herndon, VA).
[15] A. Yoshimura, K. Nozaki, N. Ikeda, T. Ohno, J. Phys. Chem. 1996, 100, 1630.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivF2gtA%3D%3D&md5=9e077a76cc3779f8e20d689bbc281f7fCAS |