Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Diglycidyl Esters Cross-Linked with Low Molecular Weight Polyethyleneimine for Magnetofection

Hao Yu A C , Shufeng Li B C , Liandong Feng A , Yucheng Liu A , Xiaoliang Qi A , Wei Wei A , Junjian Li A and Wei Dong A D
+ Author Affiliations
- Author Affiliations

A Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China.

B Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 211189, China.

C These authors contributed equally to this work.

D Corresponding author. Email: weidong@njust.edu.cn

Australian Journal of Chemistry 68(10) 1535-1542 https://doi.org/10.1071/CH14731
Submitted: 27 December 2014  Accepted: 29 March 2015   Published: 5 May 2015

Abstract

Magnetic polyethyleneimine (PEI) complexes have demonstrated to be simple and efficient vectors for enhancing gene transfection. However, the high cytotoxicity of PEI restricts its further application in vivo. In this study, we synthesized several low cytotoxicity biodegradable cationic polymers derived from PEI (Mw 600) linked with diglycidyl tartrate (DT-PEI) or its analogues (diglycidyl succinate (DS-PEI) and diglycidyl malate (DM-PEI); D-PEIs for all 3 polymers). Moreover, a type of biocompatible magnetic nanoparticles (MNPs) with negative charges was prepared to assemble with D-PEIs/DNA complexes via electrostatic interactions. The magnetic ternary complexes have appropriate sizes of 120–150 nm and zeta potential values of ~20–25 mV. The transfection ability and cell viability of D-PEIs increased as the amount of hydroxyl groups increased in the repeat unit, which indicated that increasing the hydroxyl number in the backbone of D-PEIs can enhance gene expression and decrease cytotoxicity in A549 cells. Magnetofection of DT-PEI showed similar transfection efficiency with 30 min incubation; in contrast, the standard incubation time was 4 h. All three magnetic complexes displayed lower cytotoxicity when compared with those of PEI complexes in COS-7 and A549. These results indicated that these series of magnetic PEI derivatives complexes could be potential nanocarriers for gene delivery.


References

[1]  M. Everts, V. Saini, J. L. Leddon, R. J. Kok, M. Stoff-Khalili, M. A. Preuss, C. L. Millican, G. Perkins, J. M. Brown, H. Bagaria, D. E. Nikles, D. T. Johnson, V. P. Zharov, D. T. Curiel, Nano Lett. 2006, 6, 587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1OrsLs%3D&md5=e1fc8635f0e8ffd1167ceaa5516bf340CAS | 16608249PubMed |

[2]  W. T. Godbey, A. G. Mikos, J. Controlled Release 2001, 72, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVGksrk%3D&md5=a1e71de7a34bd6332ff3da48cfa3d9f8CAS |

[3]  M. A. Mintzer, E. E. Simanek, Chem. Rev. 2009, 109, 259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOjsL3L&md5=81f8a11d9a9b57e4c5924dbc81fc5a1bCAS | 19053809PubMed |

[4]  D. A. Jackson, S. Juranek, H. J. Lipps, Mol. Ther. 2006, 14, 613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVGju7rL&md5=f03a016f1cb6b071cb0f36a3b7de04caCAS | 16784894PubMed |

[5]  A. A. Eltoukhy, D. Chen, C. A. Alabi, R. Langer, D. G. Anderson, Adv. Mater. 2013, 25, 1487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvFGgug%3D%3D&md5=a21690aea43446d9c40826ed90f992bcCAS | 23293063PubMed |

[6]  C. J. Bishop, T. M. Ketola, S. Y. Tzeng, J. C. Sunshine, A. Urtti, H. Lemmetyinen, E. Vuorimaa-Laukkanen, M. Yliperttula, J. J. Green, J. Am. Chem. Soc. 2013, 135, 6951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsV2gs74%3D&md5=b63fa57ef48441acd3ae35711a183e38CAS | 23570657PubMed |

[7]  P. J. C. Lin, Y. K. Tam, P. R. Cullis, Clin. Lipidol. 2014, 9, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWgtLrL&md5=3317035924123f4fde1916bb3c1cf026CAS |

[8]  H. O. McCarthy, J. McCaffrey, C. M. McCrudden, A. Zholobenko, A. A. Ali, J. W. McBride, A. S. Massey, S. Pentlavalli, K.-H. Chen, G. Cole, S. P. Loughran, N. J. Dunne, R. F. Donnelly, V. L. Kett, T. Robson, J. Controlled Release 2014, 189, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1KksbjF&md5=12a633e794910144d77b7626f4f2458bCAS |

[9]  A. Kiselev, A. Egorova, A. Laukkanen, V. Baranov, A. Urtti, Int. J. Pharm. 2013, 441, 736.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Cqtr3M&md5=83b9c5a0ae2cb2bbd41e1bcd3e64e240CAS | 23089582PubMed |

[10]  F. M. P. Tonelli, S. M. S. N. Lacerda, M. A. Silva, E. S. Avila, L. O. Ladeira, L. R. Franca, R. R. Resende, RSC Adv. 2014, 4, 37985.
         | 1:CAS:528:DC%2BC2cXht1yltLjP&md5=580dab2922db2d2328219aedd8473486CAS |

[11]  K. Lee, M. H. Oh, M. S. Lee, Y. S. Nam, T. G. Park, J. H. Jeong, Int. J. Pharm. 2013, 445, 196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVKmsb8%3D&md5=e28b19caaca9115f4b051e803ac1af27CAS | 23328681PubMed |

[12]  H. N. Yang, J. S. Park, S. Y. Jeon, W. Park, K. Na, K. H. Park, Biomaterials 2014, 35, 8439.
         | Crossref | GoogleScholarGoogle Scholar | 24985737PubMed |

[13]  R. K. C. Bahadur, B. Thapa, N. Bhattarai, Nanotechnol. Rev. 2014, 3, 269.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. Sun, X. Zhu, L. Zhang, X. Gu, J. Wang, J. Li, Y. Zhang, Biotechnol. Bioprocess Eng. 2013, 18, 648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1OnsL3O&md5=62a93b304db2458ccae8dd2acb30958cCAS |

[15]  S. Li, L. Huang, Gene Ther. 2000, 7, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Smtw%3D%3D&md5=f241bbbf816a7c9d07d9d578805fd3adCAS | 10680013PubMed |

[16]  M. Wang, J. D. Tucker, P. Lu, B. Wu, C. Cloer, Q. Lu, Bioconjugate Chem. 2012, 23, 837.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  Y. Wang, M. Zheng, F. Meng, J. Zhang, R. Peng, Z. Zhong, Biomacromolecules 2011, 12, 1032.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVyltr8%3D&md5=2491d0b30e972facdd8e627a1fbd5567CAS | 21332180PubMed |

[18]  L. Feng, A. Xie, X. Hu, Y. Liu, J. Zhang, S. Li, W. Dong, New J. Chem. 2014, 38, 5207.
         | 1:CAS:528:DC%2BC2cXht1GqtbjK&md5=333b3d9e9deba58d42bf1f39da24cadbCAS |

[19]  S. Li, Y. Wang, J. Zhang, W. H. Yang, Z. H. Dai, W. Zhu, X. Q. Yu, Mol. BioSyst. 2011, 7, 1254.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGhur4%3D&md5=7f3bfddbc96ff730e86d6e55d1c830f3CAS | 21286650PubMed |

[20]  H. Koo, G. W. Jin, H. Kang, Y. Lee, K. Nam, C. Z. Bai, J. S. Park, Biomaterials 2010, 31, 988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyis77L&md5=c96608ff5dddf297faf15cb96760fce3CAS | 19850338PubMed |

[21]  A. Ragusa, I. Garcia, S. Penades, IEEE Trans. Nanobioscience 2007, 6, 319.
         | Crossref | GoogleScholarGoogle Scholar | 18217625PubMed |

[22]  A. S. Lubbe, C. Alexiou, C. Bergemann, J. Surg. Res. 2001, 95, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Wkug%3D%3D&md5=bd09c08d684f76021913950033c2a7a8CAS | 11162046PubMed |

[23]  R. Xing, G. Liu, J. Zhu, Y. Hou, X. Chen, Pharm. Res. 2013, 31, 1377.
         | 24065595PubMed |

[24]  C. Plank, O. Zelphati, O. Mykhaylyk, Adv. Drug Delivery Rev. 2011, 63, 1300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2lsr3P&md5=4bb1b71861e6d4aab1d20b72ee3e4ffeCAS |

[25]  J. B. Sacha, D. I. Watkins, Nat. Protoc. 2010, 5, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaksbo%3D&md5=d0d0cf8fc909ad77d2b13ff4a0ec9ac4CAS | 20134424PubMed |

[26]  D. Ang, C. Y. Tay, L. P. Tan, P. R. Preiser, R. V. Ramanujan, Mater. Sci. Eng., C 2011, 31, 1445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSjsLvK&md5=9353fd4d48d018e4846129cf54e32daeCAS |

[27]  M. Arsianti, M. Lim, C. P. Marquis, R. Amal, Langmuir 2010, 26, 7314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Kgtbs%3D&md5=94d08bf592f28e0d74e7240a5ea68aedCAS | 20112951PubMed |

[28]  S. W. Kamau, P. O. Hassa, B. Steitz, A. Petri-Fink, H. Hofmann, M. Hofmann-Amtenbrink, B. von Rechenberg, M. O. Hottiger, Nucleic Acids Res. 2006, 34, e40.
         | Crossref | GoogleScholarGoogle Scholar | 16540591PubMed |

[29]  Y. Zhou, Z. Tang, C. Shi, S. Shi, Z. Qian, S. Zhou, J. Mater. Sci.: Mater. Med. 2012, 23, 2697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1akur3J&md5=83ce14d6443af63ae5a0f667b9d19658CAS |

[30]  F. M. Kievit, O. Veiseh, N. Bhattarai, C. Fang, J. W. Gunn, D. Lee, R. G. Ellenbogen, J. M. Olson, M. Zhang, Adv. Funct. Mater. 2009, 19, 2244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFGit74%3D&md5=e9c7742d73376146ebc392ca0b067913CAS | 20160995PubMed |

[31]  S. C. McBain, H. H. P. Yiu, A. El Haj, J. Dobson, J. Mater. Chem. 2007, 17, 2561.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlGksr0%3D&md5=c092eef79605a50cbae1e28937e86e38CAS |

[32]  M. Lattuada, T. A. Hatton, Langmuir 2007, 23, 2158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlKjsrbI&md5=c5894afdaf1cf831a8a3bbe073fcdc1dCAS | 17279708PubMed |

[33]  C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, S. Xu, Nanoscale 2010, 2, 1141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOntbnO&md5=f01d7f88b0f358d169bdab0568616702CAS | 20648340PubMed |

[34]  S. Prijic, L. Prosen, M. Cemazar, J. Scancar, R. Romih, J. Lavrencak, V. B. Bregar, A. Coer, M. Krzan, A. Znidarsic, G. Sersa, Biomaterials 2012, 33, 4379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFSgt7g%3D&md5=78a1a56a80637451173b63502e510c9bCAS | 22429983PubMed |

[35]  M. Arsianti, M. Lim, C. P. Marquis, R. Amal, Biomacromolecules 2010, 11, 2521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVamtrbM&md5=5004b451b6f39d2d3a5c71df3564921bCAS | 20712360PubMed |

[36]  F. N. Al-Deen, C. Selomulya, T. Williams, Colloids Surf., B 2013, 102, 492.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOlt7fJ&md5=b69141d8261ecd1db2441f1234ef3702CAS |

[37]  L. H. Shen, J. F. Bao, D. Wang, Y. X. Wang, Z. W. Chen, L. Ren, X. Zhou, X. B. Ke, M. Chen, A. Q. Yang, Nanoscale 2013, 5, 2133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1Chu7k%3D&md5=04d75309ed5213adaa3bc8d320d685aaCAS | 23385623PubMed |

[38]  R. A. Robinson, P. K. Smith, E. R. B. Smith, Trans. Faraday Soc. 1942, 38, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH38Xjt1Oqtg%3D%3D&md5=cfbd07dd588ea1be7612f3e0403a76b9CAS |

[39]  M. A. Islam, C. H. Yun, Y. J. Choi, J. Y. Shin, R. Arote, H. L. Jiang, S. K. Kang, J. W. Nah, I. K. Park, M. H. Cho, C. S. Cho, Biomaterials 2011, 32, 9908.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWlsbvL&md5=294dae8baf8d071249f5caac25fb7593CAS | 21959011PubMed |

[40]  L. Xie, W. Jiang, Y. Nie, Y. He, Q. Jiang, F. Lan, Y. Wu, Z. Gu, RSC Adv. 2013, 3, 23571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yltrnE&md5=7703dba89285884296342ef6699de58bCAS |

[41]  S. Huth, J. Lausier, S. W. Gersting, C. Rudolph, C. Plank, U. Welsch, J. Rosenecker, J. Gene Med. 2004, 6, 923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFajsrw%3D&md5=be3d9d057f7257bf3e88743d58d2fb9bCAS | 15293351PubMed |

[42]  J. Bertram, Curr. Pharm. Biotechnol. 2006, 7, 277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Sgur8%3D&md5=f0faf1e4af78261e7bade4d0c560c0fdCAS | 16918404PubMed |

[43]  X. Pan, J. Guan, J. W. Yoo, A. J. Epstein, L. J. Lee, R. J. Lee, Int. J. Pharm. 2008, 358, 263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFagtbg%3D&md5=167c23eed20346afda5854f7626f2142CAS | 18384982PubMed |

[44]  S. Ota, Y. Takahashi, A. Tomitaka, T. Yamada, D. Kami, M. Watanabe, Y. Takemura, J. Nanopart. Res. 2013, 15, 1653.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  F.-J. Xu, H. Li, J. Li, Z. Zhang, E.-T. Kang, K.-G. Neoh, Biomaterials 2008, 29, 3023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1KmsL0%3D&md5=380dd50d4af2c78f9ff559a64e585adaCAS | 18423581PubMed |

[46]  M. Ma, F. Li, Z.-F. Yuan, R.-X. Zhuo, Acta Biomater. 2010, 6, 2658.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosFeltr8%3D&md5=49ebe41e0de13cf5c0fd5cad5d549f3fCAS | 20097315PubMed |

[47]  W.-S. Lee, Y.-K. Kim, Q. Zhang, T.-E. Park, S.-K. Kang, D.-W. Kim, C.-S. Cho, Y.-J. Choi, Nanomedicine 2014, 10, 525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKgs7jK&md5=49f8a8b87d8c3debce4626f70a4e4353CAS | 24184000PubMed |

[48]  C. B. Gumera, Y. Wang, Adv. Mater. 2007, 19, 4404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWnuro%3D&md5=9b469085fa0c04b756b3c554decb6d5aCAS |