Synthesis of Highly Water-Soluble Adamantyl Phosphoinositide Derivatives*
Mark Gregory A , Meng-Xin Yin A , Malcolm J. McConville B , Eleanor Williams C , Alex N. Bullock C , Stuart J. Conway D , Antony W. Burgess E , Bruno Catimel E and Andrew B. Holmes A FA School of Chemistry, Bio21 Institute, University of Melbourne, 30 Flemington Road, Parkville, Vic. 3010, Australia.
B Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Vic. 3010, Australia.
C Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
D Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
E Walter and Eliza Hall Institute of Medical Research, Parkville, Vic. 3052, Australia.
F Corresponding author. Email: aholmes@unimelb.edu.au
Australian Journal of Chemistry 68(4) 543-548 https://doi.org/10.1071/CH14543
Submitted: 2 September 2014 Accepted: 23 September 2014 Published: 3 December 2014
Abstract
Phosphatidylinositol phosphates are key regulators of cell signalling pathways and membrane trafficking in eukaryotic cells, and there is a need for new chemical probes to further understand how they interact with lipid-binding proteins. Here, the synthesis of phosphatidylinositol phosphate analogues containing adamantyl carboxylic ester groups, in place of the natural lipid side chains, is described. These derivatives are considerably more soluble in water than analogues containing other lipid side chains and do not form large aggregates such as liposomes or micelles. These adamantyl analogues bind to known phosphoinositide-binding proteins with similar affinities to native ligands and will facilitate future studies on the substrate specificities of these proteins involving cocrystallisation studies with proteins.
References
[1] G. D. Prestwich, Chem. Biol. 2004, 11, 619.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktF2ru7k%3D&md5=47091aa5c5f77361d1da5bc3823af95cCAS | 15157873PubMed |
[2] B. V. L. Potter, D. Lampe, Angew. Chem. Int. Ed. Engl. 1995, 34, 1933.
| 1:CAS:528:DyaK2MXosFOqsrY%3D&md5=30cb8afb43aeac83a351e6ea82288465CAS |
[3] S. J. Conway, G. J. Miller, Nat. Prod. Rep. 2007, 24, 687.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGrurjO&md5=2701d5e23bff015247ddf010b62b47daCAS | 17653355PubMed |
[4] S. Ogino, P. Lochhead, E. Giovannucci, J. Meyerhardt, C. Fuchs, A. Chan, Oncogene 2014, 33, 2949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVylsL8%3D&md5=158dce416d811a79347a9cb6998ec69bCAS | 23792451PubMed |
[5] M. D. Best, H. Zhang, G. D. Prestwich, Nat. Prod. Rep. 2010, 27, 1403.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyisLnO&md5=f66b1adec996f6717ec91fac7de7a620CAS | 20714465PubMed |
[6] C. P. Downes, A. Gray, J. M. Lucocq, Trends Cell Biol. 2005, 15, 259.
| 1:CAS:528:DC%2BD2MXjslKhsb8%3D&md5=0da751af7ffffa679c0d9886a57b72b1CAS | 15866030PubMed |
[7] T. Bunney, M. Katan, Nat. Rev. Cancer 2010, 10, 342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltV2ktb4%3D&md5=732d12975c72eb55604afc7bad3567deCAS | 20414202PubMed |
[8] M. Best, H. Zhang, G. Prestwich, Nat. Prod. Rep. 2010, 27, 1403.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyisLnO&md5=f66b1adec996f6717ec91fac7de7a620CAS | 20714465PubMed |
[9] T. Balla, Physiol. Rev. 2013, 93, 1019.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVekurfJ&md5=2be4ddda13f6dda6e4f3b3d4f0f0be3aCAS | 23899561PubMed |
[10] S. J. Conway, J. Gardiner, S. J. A. Grove, M. K. Johns, Z.-Y. Lim, G. F. Painter, D. E. J. E. Robinson, C. Schieber, J. W. Thuring, L. S.-M. Wong, M.-X. Yin, A. W. Burgess, B. Catimel, P. T. Hawkins, N. T. Ktistakis, L. R. Stephens, A. B. Holmes, Org. Biomol. Chem. 2010, 8, 66.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFekurnI&md5=6124b49c3961c5b3a2000622bef3b8edCAS | 20024134PubMed |
[11] B. Catimel, E. Kapp, M.-X. Yin, M. Gregory, L. S.-M. Wong, M. Condron, N. Church, N. Kershaw, A. B. Holmes, A. W. Burgess, J. Proteomics 2013, 82, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslekt7w%3D&md5=a6a8a28e1b97d874947057a15c9d674cCAS | 23416715PubMed |
[12] I. H. Gilbert, A. B. Holmes, M. J. Pestchanker, R. C. Young, Carbohydr. Res. 1992, 234, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXotFaqsg%3D%3D&md5=c52e03183b3d277031faee45c3396d14CAS |
[13] B. Catimel, C. Schieber, M. Condron, H. Patsiouras, L. Connolly, J. Catimel, E. C. Nice, A. W. Burgess, A. B. Holmes, J. Proteome Res. 2008, 7, 5295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlant7nI&md5=9b47ecaab5732d5ad9806aeaa03f8cbdCAS | 19367725PubMed |
[14] B. Catimel, M.-X. Yin, C. Schieber, M. Condron, H. Patsiouras, J. Catimel, D. E. J. E. Robinson, L. S.-M. Wong, E. C. Nice, A. B. Holmes, A. W. Burgess, J. Proteome Res. 2009, 8, 3712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVKru7Y%3D&md5=5df33e1606950c01f376f05182f50284CAS | 19463016PubMed |
[15] M. J. Begley, G. S. Taylor, S.-A. Kim, D. M. Veine, J. E. Dixon, J. A. Stuckey, Mol. Cell 2003, 12, 1391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVOmuw%3D%3D&md5=b9450f849c59c9d9d31228e43d5d2c08CAS | 14690594PubMed |
[16] M. Mylvaganam, C. A. Lingwood, Biochem. Biophys. Res. Commun. 1999, 257, 391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1yksLY%3D&md5=76decee722e1c779364ea665a6cc6d19CAS | 10198223PubMed |
[17] R. Mahfoud, M. Mylvaganam, C. A. Lingwood, J. Fantini, J. Lipid Res. 2002, 43, 1670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFems7k%3D&md5=4dbbe6b9dab2b26237970bdffb9127d2CAS | 12364551PubMed |
[18] Z.-Y. Lim, J. W. Thuring, A. B. Holmes, M. Manifava, N. T. Ktistakis, J. Chem. Soc., Perkin Trans. 1 2002, 1067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1GitbY%3D&md5=a3da23bef51c83822e4b34a0f076f8c3CAS |
[19] Y. Mao, A. Nickitenko, X. Duan, T. E. Lloyd, M. N. Wu, H. Bellen, F. A. Quiocho, Cell 2000, 100, 447.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVOlur8%3D&md5=d1b064429f3be8433aca293d5cd5af61CAS | 10693761PubMed |