Facilitating Biomimetic Syntheses of Borrerine Derived Alkaloids by Means of Flow-Chemical Methods*
Sonja B. Kamptmann A and Steven V. Ley A B
+ Author Affiliations
- Author Affiliations
A Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
B Corresponding author. Email: svl1000@cam.ac.uk
Australian Journal of Chemistry 68(4) 693-696 https://doi.org/10.1071/CH14530
Submitted: 30 August 2014 Accepted: 23 September 2014 Published: 5 November 2014
Abstract
Flow chemistry is widely used nowadays in synthetic chemistry and has increasingly been applied to complex natural product synthesis. However, to date flow chemistry has not found a place in the area of biomimetic synthesis. Here we show the syntheses of borrerine derived alkaloids, indicating that we can use biomimetic principles in flow to prepare complex architectures in a single step.
References
[1] S. Saaby, K. R. Knudsen, M. Ladlow, S. V. Ley, Chem. Commun. 2005, 2909.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVynsrY%3D&md5=8344f22e02ee2f66eeec4f9df0c82cd7CAS |
[2] C. J. Smith, C. D. Smith, N. Nikbin, S. V. Ley, I. R. Baxendale, Org. Biomol. Chem. 2011, 9, 1927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislOmt7c%3D&md5=7c7ab05f80451bbde333e1f8a7e1410aCAS | 21283873PubMed |
[3] A. G. O’Brien, F. Lévesque, Y. Suzuki, P. H. Seeberger, Chim. Oggi 2011, 29, 57.
| 1:CAS:528:DC%2BC3MXps1OnsLs%3D&md5=83b37a2ae299f1fbaed113211d218b62CAS |
[4] P. Poechlauer, S. Braune, B. Dielemans, B. Kaptein, R. Obermüller, M. Thathagar, Chim. Oggi 2012, 30, 51.
| 1:CAS:528:DC%2BC38XhsFSisLnM&md5=4c2aeacf87ac1ad0d143713352a12679CAS |
[5] L. Vaccaro, D. Lanari, A. Marrocchi, G. Strappaveccia, Green Chem. 2014, 16, 3680.(and references cited therein).
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyrs7jO&md5=d94cfd86b712b78447ef4057c8c1981eCAS |
[6] I. R. Baxendale, C.-M. Griffith-Jones, S. V. Ley, G. Tranmer, Chem. – Eur. J. 2006, 12, 4407.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xls1GisL0%3D&md5=1896cc47684ce21b7b7b746023de2ea3CAS | 16586523PubMed |
[7] T. Razzaq, T. N. Glasnov, C. O. Kappe, Chem. Eng. Technol. 2009, 32, 1702.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCrsLzI&md5=e695fb65e2a546cd090863a3897c3be0CAS |
[8] T. Razzaq, C. O. Kappe, Chem. Asian J. 2010, 5, 1274.
| 1:CAS:528:DC%2BC3cXmvFSrsLY%3D&md5=c73f4052336327ff6cf01089bad3cc36CAS | 20411525PubMed |
[9] D. L. Browne, B. H. Harji, S. V. Ley, Chem. Eng. Technol. 2013, 36, 959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVyhtb8%3D&md5=2e4157993e1d0d53f5b71414201748c9CAS |
[10] A. Sugimoto, T. Fukuyama, M. T. Rahman, I. Ryu, Tetrahedron Lett. 2009, 50, 6364.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1amur7I&md5=07eee763cfd44484bc2537a8656093efCAS |
[11] M. Rasheed, T. Wirth, Chim. Oggi 2011, 3, 54.
[12] M. Rueping, T. Bootwicha, E. Sugiono, Beilstein J. Org. Chem. 2012, 8, 300.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFyhtb4%3D&md5=e5a482731154190821c6dfd9c8e14aeeCAS | 22423298PubMed |
[13] C. F. Carter, H. Lange, S. V. Ley, I. R. Baxendale, B. Wittkamp, J. G. Goode, N. L. Gaunt, Org. Process Res. Dev. 2010, 14, 393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCgsrk%3D&md5=4382f1cf7d94540333edb13ef696b3afCAS |
[14] D. L. Browne, S. Wright, B. J. Deadman, S. Dunnage, I. R. Baxendale, R. M. Turner, S. V. Ley, Rapid Commun. Mass Spectrom. 2012, 26, 1999.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFalu7nE&md5=74c33f8768c7b0147eb9a94d127b97dfCAS | 22847699PubMed |
[15] I. R. Baxendale, L. Brocken, C. J. Mallia, Green Process. Synth. 2013, 2, 211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtleltLc%3D&md5=169cffeeac08dff2431839faebcd58afCAS |
[16] F. Lévesque, P. H. Seeberger, Angew. Chem. 2012, 124, 1738.[Angew. Chem. Int. Ed. 2012, 51, 1706].
| Crossref | GoogleScholarGoogle Scholar |
[17] S. Newton, C. F. Carter, C. M. Pearson, L. de C. Alves, H. Lange, P. Thansandote, S. V. Ley, Angew. Chem. 2014, 126, 5015.[Angew. Chem. Int. Ed. 2014, 53, 4915].
| Crossref | GoogleScholarGoogle Scholar |
[18] For a recent review see: J. C. Pastre, D. L. Browne, S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWqsrfK&md5=7498560a65a8b1a7fc5e8b9433158323CAS | 23999700PubMed |
[19] V. A. Soloshonok, H. T. Catt, T. Ono, J. Fluor. Chem. 2009, 130, 512.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltl2nu7s%3D&md5=f3e3caf92ddabe34eccd838a980b7ee6CAS |
[20] R. Marion, G. Muthusamy, F. Geneste, J. Catal. 2012, 286, 266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkslOjuw%3D%3D&md5=3ee1d956d9eae4f2f46b269a195aec7eCAS |
[21] M. A. Kabeshov, B. Musio, P. R. D. Murray, D. L. Browne, S. V. Ley, Org. Lett. 2014, 16, 4618.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSnsLzI&md5=de8fccb402cd3327ae60ff08ee63bc94CAS | 25147957PubMed |
[22] J. L. Pousset, J. Kerharo, G. Maynart, A. Cavé, R. Goutarel, Phytochemistry 1973, 12, 2308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXltlCgt7w%3D&md5=74bcb5833de1036a11bf3109791ee665CAS |
[23] J. L. Pousset, A. Cavé, A. Chiaroni, C. Riche, J. Chem. Soc., Chem. Commun. 1977, 261.
| Crossref | GoogleScholarGoogle Scholar |
[24] F. Tillequin, M. Koch, J. Chem. Soc., Chem. Commun. 1978, 826.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtVCiurg%3D&md5=9a9a2dfb5c351e95b99a1af70a79aad1CAS |
[25] A. N. Ratnagirisvvarnn, K. Venkatachalam, J. Indian Chem. Soc. 1942, 19, 389.
[26] K. K. Purushothaman, A. Sarada, Phytochemistry 1981, 20, 351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltlehs7o%3D&md5=c1377e3f671dd42e59b41635f375fda2CAS |
[27] A. M. Baldé, L. A. Pieters, A. Gergely, V. Wray, M. Claeys, A. J. Vlietinck, Phytochemistry 1991, 30, 997.
| Crossref | GoogleScholarGoogle Scholar |
[28] L. S. Fernandez, M. F. Jobling, K. T. Andrew, V. M. Avery, Phytother. Res. 2008, 22, 1409.
| Crossref | GoogleScholarGoogle Scholar | 18693292PubMed |
[29] L. S. Fernandez, M. S. Buchanan, A. R. Carroll, Y. J. Feng, R. J. Quinn, V. M. Avery, Org. Lett. 2009, 11, 329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFaisrjI&md5=7717839b7fe5482cbbb5569b6fa32011CAS | 19090698PubMed |
[30] L. S. Fernandez, M. L. Sykes, K. T. Andrew, V. M. Avery, Int. J. Antimicrob. Agents 2010, 36, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVSrsLk%3D&md5=ff13c97e041ed7e24e73a042bbefd08eCAS | 20580535PubMed |
[31] D. H. Dethe, R. D. Erande, A. Ranjan, J. Am. Chem. Soc. 2011, 133, 2864.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVWjurw%3D&md5=31bc5c3f5394ee41da40deb4f013b199CAS | 21314186PubMed |
[32] R. M. Zeldin, F. D. Toste, Chem. Sci. 2011, 2, 1706.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFCmsLk%3D&md5=87bc62fa352749a640fb4ec5ac802d00CAS | 22773943PubMed |
[33] R. Vallakati, J. A. May, J. Am. Chem. Soc. 2012, 134, 6936.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xltl2hs7c%3D&md5=6efe16eacca25d1a84ca3ef993bf1bbfCAS | 22489830PubMed |
[34] R. Vallakati, J. A. May, Synlett 2012, 23, 2577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFWq&md5=3a2e52756a47b1e74bccd4631736aa8dCAS |
[35] R. Vallakati, J. P. Smuts, D. W. Armstrong, J. A. May, Tetrahedron Lett. 2013, 54, 5892.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOntLfO&md5=406623263549abb06a69fe3f87b13fe4CAS |
[36] D. H. Dethe, R. D. Erande, B. D. Dherange, Org. Lett. 2014, 16, 2764.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsFSksr8%3D&md5=2beed44288edb3f6c575f3ca13fca981CAS | 24797220PubMed |
[37] See Supplementary Material for details of the flow set-up used for the flow experiments.
[38] M. Bandini, M. Fagioli, A. Melloni, A. Umani-Ronchi, Adv. Synth. Catal. 2004, 346, 573.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFCjtr8%3D&md5=7614c5327aff57f7f42e475c1f1b77b9CAS |
[39] PVPP-BF3 = polyvinylpolypyrrolidone-supported boron trifluoride.
[40] M. M. Lakouraj, M. Mokhtary, Monatsh. Chem. 2009, 140, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFCrtQ%3D%3D&md5=ab18fa3d78406a52ac86768ee22c0b66CAS |
[41] C. R. Quinn, J. H. Clark, S. J. Tavener, K. Wilson, Green Chem. 2003, 5, 602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVGgurg%3D&md5=c82df2b17842a38fd68ffb2eb7ce8dd7CAS |
[42] Determined by δH (400 MHz, [D4]MeOH) 4.34 (q, J 8.7) vs 4.25 (q, J 8.5).
[43] L. Guetzoyan, R. J. Ingham, N. Nikbin, J. Rossignol, M. Wolling, M. Baumert, N. A. Burgess-Brown, C. M. Strain-Damerell, L. Shrestha, P. E. Brennan, O. Fedorov, S. Knapp, S. V. Ley, Med. Chem. Commun. 2014, 5, 540.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvF2isbY%3D&md5=1bf92c302e26794f4247979cd511ea04CAS |