Roger F. C. Brown Memorial Issue
Curt Wentrup
+ Author Affiliations
- Author Affiliations
School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072. Email: wentrup@uq.edu.au
Australian Journal of Chemistry 67(9) 1139-1141 https://doi.org/10.1071/CH14419
Published: 2 September 2014
References
[1] G. M. Badger, Prog. Phys. Org. Chem 1965, 3, 1.| 1:CAS:528:DyaF28Xkt1yrtLc%3D&md5=fc03ab6a14e5d2f215d01702bf78e222CAS |
[2] E. Hedaya, D. W. McNeil, J. Am. Chem. Soc. 1967, 89, 4213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXltVyjsb8%3D&md5=4de8e3dcf346db714968a43b213b41e7CAS |
[3] Further details of Roger Brown’s life can be found in the foreword by F. W. Eastwood in this issue: F. W. Eastwood, Aust. J. Chem. 2014, 67, 1142.
| Crossref | GoogleScholarGoogle Scholar |
[4] C. Wentrup, Aust. J. Chem. 2014, 67, 1150.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) R. F. C. Brown, R. K. Solly, Chem. Ind. (London) 1965, 181.
| 1:CAS:528:DyaF2MXktlOnuw%3D%3D&md5=e433f59e48c3e126e9f53009c6d8f002CAS |
(b) R. F. C. Brown, R. K. Solly, Chem. Ind. (London) 1965, 1462.
(c) R. F. C. Brown, W. D. Crow, R. K. Solly, Chem. Ind. (London) 1966, 343.
[6] The concerted 1,2-dyotropic shift is symmetry-forbidden; hence such reactions have to take place via vinylidene intermediates: M. T. Reetz, Angew. Chem. Int. Ed. 1972, 11, 129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xht1Kjs78%3D&md5=b733b3391353f62b84f1f24b32a4736eCAS |
[7] (a) R. F. C. Brown, K. J. Harrington, G. L. McMullen, J. Chem. Soc. Chem. Commun. 1974, 123.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. F. C. Brown, F. W. Eastwood, K. J. Harrington, G. L. McMullen, Aust. J. Chem. 1974, 27, 2393.
(c) R. F. C. Brown, F. W. Eastwood, G. P. Jackman, Aust. J. Chem. 1977, 30, 1757.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. F. C. Brown, F. W. Eastwood, G. P. Jackman, Aust. J. Chem. 1978, 31, 579.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. Chrostowska, S. Lesniak, Aust. J. Chem. 2014, 67, 1166.
| Crossref | GoogleScholarGoogle Scholar |
[9] I. D. Rae, Aust. J. Chem. 2014, 67, 1146.
| Crossref | GoogleScholarGoogle Scholar |
[10] C. Th. Pedersen, M. W. Wong, K. Takimiya, P. Gerbaux, R. Flammang, Aust. J. Chem. 2014, 67, 1195.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. M. Moghaddam, C. O. Kappe, Aust. J. Chem. 2014, 67, 1180.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. Zahedifar, H. Sheibani, Aust. J. Chem. 2014, 67, 1201.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. Korte, A. Mardyukov, W. Sander, Aust. J. Chem. 2014, 67, 1324.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. Kuhn, D. Miura, H. Tomioka, C. Wentrup, Aust. J. Chem. 2014, 67, 1174.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. F. Hooper, J. M. White, A. B. Holmes, Aust. J. Chem. 2014, 67, 1189.
| Crossref | GoogleScholarGoogle Scholar |
[16] A. S. Dewi, T. A. Hadi, N. D. Fajarningsih, J. T. Blanchfield, P. V. Bernhardt, M. J. Garson, Aust. J. Chem. 2014, 67, 1205.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. B. Bremner, Z. Wu, Aust. J. Chem. 2014, 67, 1217.
| Crossref | GoogleScholarGoogle Scholar |
[18] M. A. Honey, C. J. Moody, Aust. J. Chem. 2014, 67, 1211.
| Crossref | GoogleScholarGoogle Scholar |
[19] R. S. Szabadai, J. Roth-Barton, K. P. Ghiggino, J. M. White, D. J. D. Wilson, Aust. J. Chem. 2014, 67, 1330.
| Crossref | GoogleScholarGoogle Scholar |
[20] S.-A. G. Abel, M. O. Eglinton, J. K. Howard, D. J. Hunt, R. H. Prager, J. A. Smith, Aust. J. Chem. 2014, 67, 1228.
| Crossref | GoogleScholarGoogle Scholar |
[21] W. M. Hussein, R. P. McGeary, Aust. J. Chem. 2014, 67, 1222.
| Crossref | GoogleScholarGoogle Scholar |
[22] B. Zwanenburg, A. A. Volkers, A. J. H. Klunder, Aust. J. Chem. 2014, 67, 1234.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. J. H. Klunder, A. A. Volkers, B. Zwanenburg, Aust. J. Chem. 2014, 67, 1243.
| Crossref | GoogleScholarGoogle Scholar |
[24] P. M. Mirzayans, E. H. Krenske, C. M. Williams, Aust. J. Chem. 2014, 67, 1309.
| Crossref | GoogleScholarGoogle Scholar |
[25] G. B. Deacon, C. M. Forsyth, O. Gazukin, P. C. Junk, G. Meyer, J. Sierau, D. R. Turner, Aust. J. Chem. 2014, 67, 1251.
| Crossref | GoogleScholarGoogle Scholar |
[26] S. A. Jones, J. Duncan, S. G. Aitken, J. M. Coxon, A. D. Abell, Aust. J. Chem. 2014, 67, 1257.
| Crossref | GoogleScholarGoogle Scholar |
[27] S. Sandanayake, S. J. Langford, Aust. J. Chem. 2014, 67, 1264.
| Crossref | GoogleScholarGoogle Scholar |
[28] V. Suryanti, G. C. Condie, M. Bhadbhade, R. Bishop, D. StC. Black, N. Kumar, Aust. J. Chem. 2014, 67, 1270.
| Crossref | GoogleScholarGoogle Scholar |
[29] E. A. Jackson, X. Xue, H. Y. Cho, L. T. Scott, Aust. J. Chem. 2014, 67, 1279.
| Crossref | GoogleScholarGoogle Scholar |
[30] R. A. Aitken, C. Hauduc, M. S. Hossain, E. McHale, A. L. Schwan, A. M. Z. Slawin, C. A. Stewart, Aust. J. Chem. 2014, 67, 1288.
| Crossref | GoogleScholarGoogle Scholar |
[31] A. Ajaz, A. C. Voukides, K. J. Cahill, R. Thamatam, S. L. Skraba-Joiner, R. P. Johnson, Aust. J. Chem. 2014, 67, 1301.
| Crossref | GoogleScholarGoogle Scholar |
[32] J. M. Brown, Aust. J. Chem. 2014, 67, 1296.
| Crossref | GoogleScholarGoogle Scholar |
[33] S. A. Glover, A. A. Rosser, R. M. Spence, Aust. J. Chem. 2014, 67, 1344.
| Crossref | GoogleScholarGoogle Scholar |
[34] R. Jia, C. Wang, L. Qiong, Q.-S. Li, Y. Xie, R. B. King, H. F. Schaefer, Aust. J. Chem. 2014, 67, 1318.
| Crossref | GoogleScholarGoogle Scholar |
[35] A. W. Amick, S. E. Martin, Aust. J. Chem. 2014, 67, 1338.
| Crossref | GoogleScholarGoogle Scholar |
[36] Q. Simpson, R. Konrath, D. W. Lupton, Aust. J. Chem. 2014, 67, 1353.
| Crossref | GoogleScholarGoogle Scholar |
[37] J. Cao, P. Perlmutter, Aust. J. Chem. 2014, 67, 1360.
| Crossref | GoogleScholarGoogle Scholar |
[38] G. Baba, J.-C. Guillemin, Aust. J. Chem. 2014, 67, 1357.
| Crossref | GoogleScholarGoogle Scholar |
[39] U. E. Wiersum, Aust. J. Chem. 2014, 67, 1362.
| Crossref | GoogleScholarGoogle Scholar |