Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Hydrogen Bonding of O-Ethylxanthate Compounds and Neutron Structural Determination of C–H···S Interactions

Lauren K. Macreadie A C , Alison J. Edwards B , Anthony S. R. Chesman C and David R. Turner A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2234, Australia.

C CSIRO Manufacturing Flagship, Bayview Avenue, Clayton, Vic. 3168, Australia.

D Corresponding author. Email: david.turner@monash.edu

Australian Journal of Chemistry 67(12) 1829-1839 https://doi.org/10.1071/CH14355
Submitted: 4 June 2014  Accepted: 26 June 2014   Published: 10 October 2014

Abstract

A range of ethylxanthate (EtXn) salts, containing either protic or aprotic cations (guanidinium (1), methylammonium (2), dimethylammonium (3), trimethylammonium (4), tetramethylammonium (5), tetraethylammonium (6), and tetrapropylammonium (7)), have been synthesised and structurally characterised. The cations in these compounds differ in their degree of hydrogen-bonding ability, i.e. the number of donor groups, with significant structural consequences. Compounds 14 contain cations that are able to form N–H···S hydrogen bonds, with six, three, two, and one donor groups in 14 respectively. The number of donor atoms affects greatly the dimensionality of the hydrogen-bonding networks in the solid state. The structure of 1 has a 3-D hydrogen-bonding network, 2 and 3 form 2-D sheets and 1-D chains respectively, whereas the lone NH donor group in 4 has strong hydrogen bonding only within a discrete cation–anion pair. The tetraalkylammonium salts 57 have no strong hydrogen bonding, with only C–H···S and C–H···O interactions possible. To determine unambiguously the presence of such interactions, single-crystal Laue neutron diffraction data were obtained for compound 5, providing a fully anisotropic model, which can be used to rationalise potential close interactions in the other structures. The neutron structure of 5 confirms the existence of C–H···S hydrogen bonds, with the H···S distance falling well within the sum of the van der Waals radii of the atoms. The close-packing in 57 is mediated solely through these weak interactions, with the size of the cations influencing the structures.


References

[1]  J. W. Steed, D. R. Turner, K. J. Wallace, Core Concepts in Supramolecular Chemistry and Nanochemistry 2007 (Wiley: Chichester, UK).

[2]  J. W. Steed, J. L. Atwood, Supramolecular Chemistry 2009 (Wiley: Chichester, UK).

[3]  G. A. Jeffrey, An Introduction to Hydrogen Bonding 1997 (Oxford University Press: Oxford, UK).

[4]  M. Krische, J.-M. Lehn, in Structure and Bonding (Ed. M. Fujita) 2000, Vol. 96, pp. 3–29 (Springer: Heidelberg, Germany).

[5]  D. Braga, L. Maini, M. Polito, F. Grepioni, in Structure and Bonding (Eds D. Michael, P. Mingos) 2004, Vol. 111, pp. 1–32 (Springer: Heidelberg, Germany).

[6]  A. D. Burrows, in Structure and Bonding (Eds D. Michael, P. Mingos) 2004, Vol. 108, pp. 55–96 (Springer: Heidelberg, Germany).

[7]  R. Custelcean, Chem. Commun. 2008, 295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1Gntg%3D%3D&md5=6a5b2511c622a22e44cd683b8399dc17CAS |

[8]  G. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology 2001 (Oxford University Press: Oxford, UK).

[9]  G. R. Desiraju, Chem. Commun. 2005, 2995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt12mtb4%3D&md5=6555903bc6bb142f5136bd77ca24df77CAS |

[10]  M. D. Ward, Chem. Commun. 2005, 5838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GltrnL&md5=8c04170424047944896c657a5a204165CAS |

[11]  K. N. Lehane, E. J. A. Moynihan, N. Brondel, S. E. Lawrence, A. R. Maguire, CrystEngComm 2007, 9, 1041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtleqtb3J&md5=e7b133997a10e2a3c2ec168045b084e7CAS |

[12]  D. Kaur, D. Aulakh, S. Khanna, H. Singh, J. Sulfur Chem. 2014, 35, 290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotlWktw%3D%3D&md5=44427f9d2141da5bf8b71b75090f792fCAS |

[13]  P. Zhou, F. Tian, F. Lv, Z. Shang, Proteins: Struct., Funct., Bioinf. 2009, 76, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFKhtLY%3D&md5=d9df2b7d2d967965178a50ec0296cc80CAS |

[14]  D. Kaur, D. Aulakh, R. Sharma, H. Singh, J. Sulfur Chem. 2013, 34, 512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1SgtL0%3D&md5=3efa1f95d4e1a474e82cb1270b5ff0bbCAS |

[15]  H. S. Biswal, S. Wategaonkar, J. Phys. Chem. A 2009, 113, 12763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OitLvL&md5=145a74a6b8d57e6e5004fa44c4748e17CAS | 19831376PubMed |

[16]  H. S. Biswal, P. R. Shirhatti, S. Wategaonkar, J. Phys. Chem. A 2009, 113, 5633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlygs70%3D&md5=df23bc49eec7d86e2d9d7c8cda523312CAS | 19364116PubMed |

[17]  V. Madhu, S. K. Das, Eur. J. Inorg. Chem. 2006, 2006, 1505.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  K. Baranowska, J. Chojnacki, A. Konitz, W. Wojnowski, B. Becker, Polyhedron 2006, 25, 1555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVansLg%3D&md5=c173f4902eb5ab0601b0cc716fea43e2CAS |

[19]  J. M. Cole, G. J. McIntyre, M. S. Lehmann, D. A. A. Myles, C. Wilkinson, J. A. K. Howard, Acta Crystallogr., Sect. A: Found. Crystallogr. 2001, 57, 429.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzlsleqsQ%3D%3D&md5=80eab77fd554558954aaf4edcd338b81CAS |

[20]  M. K. Krepps, S. Parkin, D. A. Atwood, Cryst. Growth Des. 2001, 1, 291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVKltro%3D&md5=f29af9262cf8d177005b50130a241dbeCAS |

[21]  M. S. Taylor, E. N. Jacobsen, Angew. Chem. Int. Ed. 2006, 45, 1520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisVahs7c%3D&md5=b8b08b5e5b9211dc35aa5494213ee6e3CAS |

[22]  S. J. Connon, Chem. – Eur. J. 2006, 12, 5418.
         | Crossref | GoogleScholarGoogle Scholar | 16514689PubMed |

[23]  M. Domagała, S. J. Grabowski, J. Phys. Chem. A 2005, 109, 5683.
         | Crossref | GoogleScholarGoogle Scholar | 16833901PubMed |

[24]  C. Rovira, J. J. Novoa, Chem. Phys. Lett. 1997, 279, 140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFemu7k%3D&md5=d92af3536749d2c2d696d74ad9676018CAS |

[25]  M. Domagała, S. J. Grabowski, K. Urbaniak, G. Mlostoń, J. Phys. Chem. A 2003, 107, 2730.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. A. Walters, J. Barad, A. Sireci, J. A. Golen, A. L. Rheingold, Inorg. Chim. Acta 2005, 358, 633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOntg%3D%3D&md5=bdd71fdc50af7d72783a0f4163a4ad02CAS |

[27]  A. S. R. Chesman, N. W. Duffy, A. Martucci, L. De Oliveira Tozi, T. B. Singh, J. J. Jasieniak, J. Mater. Chem. C 2014, 2, 3247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlsFyrtro%3D&md5=a0203cf561d5cee02d23abe794f39d94CAS |

[28]  A. S. R. Chesman, N. W. Duffy, S. Peacock, L. Waddington, N. A. S. Webster, J. J. Jasieniak, RSC Adv. 2013, 3, 1017.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKgsr7O&md5=759b1660593c53aadd78bf79b3738d28CAS |

[29]  F. Todescato, A. S. R. Chesman, A. Martucci, R. Signorini, J. J. Jasieniak, Chem. Mater. 2012, 24, 2117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Wku7w%3D&md5=786417dc3efb266f95f4bd42e0420978CAS |

[30]  T. Rath, M. Edler, W. Haas, A. Fischereder, S. Moscher, A. Schenk, R. Trattnig, M. Sezen, G. Mauthner, A. Pein, D. Meischler, K. Bartl, R. Saf, N. Bansal, S. A. Haque, F. Hofer, E. J. W. List, G. Trimmel, Adv. Energy Mater. 2011, 1, 1046.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyqsb7O&md5=0c9ee0060a51ec93e6e87df107d4a4ecCAS |

[31]  N. Alam, M. S. Hill, G. Kociok-Köhn, M. Zeller, M. Mazhar, K. C. Molloy, Chem. Mater. 2008, 20, 6157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFaitLnE&md5=1c5d2da7d0ad083778ed7000312a2ee3CAS |

[32]  N. Pradhan, B. Katz, S. Efrima, J. Phys. Chem. B 2003, 107, 13843.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVKnt78%3D&md5=119d6a131ce8dd4ca9ef921aea61c957CAS |

[33]  L. K. Macreadie, H. E. Maynard-Casely, S. R. Batten, D. R. Turner, A. S. R. Chesman, ChemPlusChem
         | Crossref | GoogleScholarGoogle Scholar |

[34]  T. M. McPhillips, S. E. McPhillips, J. H. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. J. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=5d700bcffa3d3c4d2d31273ee0f0c918CAS | 12409628PubMed |

[35]  W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=9419610f4cb6fb932fb5c42cc5bcbb43CAS |

[36]  G. M. Sheldrick, SHELXL-97 1997 (University of Gottingen: Gottingen, Germany).

[37]  L. J. Barbour, Supramol. Chem. 2001, 1, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOlsb8%3D&md5=c1944f963c9746f0d36d45a7614ad428CAS |

[38]  R. O. Piltz, private communication.

[39]  R. O. Piltz, Acta Crystallogr. 2011, A67, C155.

[40]  C. Wilkinson, H. W. Khamis, R. F. D. Stansfield, G. J. McIntyre, J. Appl. Cryst. 1988, 21, 471.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  D. R. Turner, R. MacDonald, W. Teng Lee, S. R. Batten, CrystEngComm 2009, 11, 298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVWlu7s%3D&md5=0e7bf94f2a05a836ea3080da9f8186d1CAS |

[42]  D. R. Turner, S. R. Batten, Cryst. Growth Des. 2010, 10, 2501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFyrtr8%3D&md5=5423e22e16d285a3d3f49a327af85210CAS |

[43]  J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, Angew. Chem. Int. Ed. 1995, 34, 1555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1altLk%3D&md5=9b4a55df5de6764dd01ba5b84581a574CAS |

[44]  M. C. Etter, Acc. Chem. Res. 1990, 23, 120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFOgt74%3D&md5=f8ea8995a022c72ee90020380704bceaCAS |

[45]  M. C. Etter, J. Phys. Chem. 1991, 95, 4601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVOku7g%3D&md5=0414061109ada181ff3a1e2861b9ad00CAS |

[46]  M. C. Etter, J. C. MacDonald, J. Bernstein, Acta Crystallogr., Sect. B: Struct. Sci. 1990, 46, 256.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  E. D. Raczyńska, M. K. Cyrański, M. Gutowski, J. Rak, J.-F. Gal, P.-C. Maria, M. Darowska, K. Duczmal, J. Phys. Org. Chem. 2003, 16, 91.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  K.-Z. Xu, C.-R. Chang, J.-R. Song, F.-Q. Zhao, H.-X. Ma, X.-Q. Lü, R.-Z. Hu, Chin. J. Chem. 2008, 26, 495.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  T. Steiner, J. Chem. Soc. Chem. Commun. 1995, 1331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmslaqsLg%3D&md5=c3963770d7e0e999dfe16992b4ef8cccCAS |

[50]  R. Taylor, O. Kennard, Acta Crystallogr., Sect. B: Struct. Sci. 1983, 39, 133.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  A. Bondi, J. Phys. Chem. 1964, 68, 441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=116107986ca72c813bccbb0748675625CAS |

[52]  S. S. Batsanov, Inorg. Mater. 2001, 37, 871.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1Cgsb4%3D&md5=3773a341c15367743673542022ba7330CAS |

[53]  G. A. Jeffrey, in Accurate Molecular Structures: Their Determination and Importance (Eds A. Domenicano, I. Hargittai) 1992, Ch. 11, pp. 270–298 (IUCr: Oxford, UK).

[54]  C. C. Wilson, Single-Crystal Neutron Diffraction From Molecular Materials 1999 (World Scientific Publishing: Singapore).

[55]  F. H. Allen, I. J. Bruno, Acta Crystallogr., Sect. B: Struct. Sci. 2010, 66, 380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1ensL4%3D&md5=20507f3704efaac6f2bb246e4503ddf5CAS |

[56]  A. J. Edwards, Aust. J. Chem. 2011, 64, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFyisLk%3D&md5=0d661223f2f9f3161a96df0578cd73bbCAS |

[57]  G. J. McIntyre, M.-H. Lemée-Cailleau, C. Wilkinson, Physica B 2006, 385–386, 1055.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  P. R. Mallinson, G. T. Smith, C. C. Wilson, E. Grech, K. Wozniak, J. Am. Chem. Soc. 2003, 125, 4259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVOls74%3D&md5=325f1749911cc273158b52766746033fCAS | 12670248PubMed |

[59]  K. A. Kerr, J. P. Ashmore, T. F. Koetzle, Acta Crystallogr., Sect. B: Struct. Sci. 1975, 31, 2022.
         | Crossref | GoogleScholarGoogle Scholar |