Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Membrane Protein Structures for Rational Antimicrobial Drug Design

Patricia M. Walden A , Roisin M. McMahon A and Julia K. Archbold A B
+ Author Affiliations
- Author Affiliations

A Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, St Lucia, Qld 4072, Australia.

B Corresponding author. Email: j.archbold@uq.edu.au

Australian Journal of Chemistry 67(12) 1724-1731 https://doi.org/10.1071/CH14333
Submitted: 26 May 2014  Accepted: 17 June 2014   Published: 12 August 2014

Abstract

Antibiotic resistance is a major global health threat. Bacteria have developed novel resistance mechanisms to many of the latest generations of antibiotics and there is an urgent need to develop new therapies to combat these infections. Infections that are caused by multi-drug resistant Gram-negative bacteria result in poor prognosis, prolonged illness, and greater costs for health care. Recent research has pointed to several key bacterial membrane proteins as potential targets for drug and vaccine development. However, determination of the structures of these membrane proteins is not a trivial task. Here we review recent breakthroughs of the structural determination of bacterial membrane proteins and their potential for the future rational design of novel antimicrobial therapies.


References

[1]  K. Lewis, Nat. Rev. Drug Discov. 2013, 12, 371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Ojt70%3D&md5=c61209a155bad52e0f45191e4c8e2918CAS | 23629505PubMed |

[2]  S. K. Buchanan, Curr. Opin. Struct. Biol. 1999, 9, 455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1CgsbY%3D&md5=53035b0de00f3da49431bb7da22bf0a6CAS | 10449368PubMed |

[3]  J. D. Bendtsen, T. T. Binnewies, P. F. Hallin, D. W. Ussery, Microbiology 2005, 151, 2119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvV2mtbs%3D&md5=109b60867ee23b10e65496aff1bdaebcCAS | 16000701PubMed |

[4]  D. Drew, M. Lerch, E. Kunji, D. J. Slotboom, J. W. de Gier, Nat. Methods 2006, 3, 303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Olsbc%3D&md5=59184c3192729c470695c8dc696e21e7CAS | 16554836PubMed |

[5]  D. Drew, S. Newstead, Y. Sonoda, H. Kim, G. von Heijne, S. Iwata, Nat. Protoc. 2008, 3, 784.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlSgsL4%3D&md5=b6dbf939a892d25614ea6a8d7dc82916CAS | 18451787PubMed |

[6]  D. Drew, D. J. Slotboom, G. Friso, T. Reda, P. Genevaux, M. Rapp, N. M. Meindl-Beinker, W. Lambert, M. Lerch, D. O. Daley, K. J. Van Wijk, J. Hirst, E. Kunji, J. W. De Gier, Protein Sci. 2005, 14, 2011.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVejtr0%3D&md5=73cac536e96a7b69bb0a665085cec573CAS | 15987891PubMed |

[7]  H. J. Kang, C. Lee, D. Drew, Int. J. Biochem. Cell Biol. 2013, 45, 636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVCqurk%3D&md5=ce06a510e7df10fffd03ef4904bf553aCAS | 23291355PubMed |

[8]  R. M. Stroud, F1000 Biol. Rep. 2011, 3, 8.
         | Crossref | GoogleScholarGoogle Scholar | 21655333PubMed |

[9]  R. M. Bill, P. J. Henderson, S. Iwata, E. R. Kunji, H. Michel, R. Neutze, S. Newstead, B. Poolman, C. G. Tate, H. Vogel, Nat. Biotechnol. 2011, 29, 335.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVCkurY%3D&md5=9415f9eb211cf94ad9ef67ef25305cf6CAS | 21478852PubMed |

[10]  Y. Sonoda, S. Newstead, N. J. Hu, Y. Alguel, E. Nji, K. Beis, S. Yashiro, C. Lee, J. Leung, A. D. Cameron, B. Byrne, S. Iwata, D. Drew, Structure 2011, 19, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFCkug%3D%3D&md5=c9a641be67ed8d8740334fd09c30c1fdCAS | 21220112PubMed |

[11]  I. Moraes, G. Evans, J. Sanchez-Weatherby, S. Newstead, P. D. Stewart, Biochim. Biophys. Acta 2014, 1838, 78.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ems7zK&md5=d276c6c6b721357040381e0d8911d7c4CAS | 23860256PubMed |

[12]  V. Cherezov, D. M. Rosenbaum, M. A. Hanson, S. G. Rasmussen, F. S. Thian, T. S. Kobilka, H. J. Choi, P. Kuhn, W. I. Weis, B. K. Kobilka, R. C. Stevens, Science 2007, 318, 1258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGmur7I&md5=960b27e5d5fbe109587e86bac599706eCAS | 17962520PubMed |

[13]  M. Caffrey, Annu. Rev. Biophys. 2009, 38, 29.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlent7g%3D&md5=8d656b1269b6c46b7d5061b61c6b8529CAS | 19086821PubMed |

[14]  M. Caffrey, V. Cherezov, Nat. Protoc. 2009, 4, 706.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVWjsrs%3D&md5=fa58c8a90056d20f9562b20af79a71d2CAS | 19390528PubMed |

[15]  S. Boutet, L. Lomb, G. J. Williams, T. R. Barends, A. Aquila, R. B. Doak, U. Weierstall, D. P. DePonte, J. Steinbrener, R. L. Shoeman, M. Messerschmidt, A. Barty, T. A. White, S. Kassemeyer, R. A. Kirian, M. M. Seibert, P. A. Montanez, C. Kenney, R. Herbst, P. Hart, J. Pines, G. Haller, S. M. Gruner, H. T. Philipp, M. W. Tate, M. Hromalik, L. J. Koerner, N. van Bakel, J. Morse, W. Ghonsalves, D. Arnlund, M. J. Bogan, C. Caleman, R. Fromme, C. Y. Hampton, M. S. Hunter, L. C. Johansson, G. Katona, C. Kupitz, M. Liang, A. V. Martin, K. Nass, L. Redecke, F. Stellato, N. Timneanu, D. Wang, N. A. Zatsepin, D. Schafer, J. Defever, R. Neutze, P. Fromme, J. C. Spence, H. N. Chapman, I. Schlichting, Science 2012, 337, 362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOisrvP&md5=e47cc44c82fa98e40de7ee997edb0b0cCAS | 22653729PubMed |

[16]  W. Liu, D. Wacker, C. Gati, G. W. Han, D. James, D. Wang, G. Nelson, U. Weierstall, V. Katritch, A. Barty, N. A. Zatsepin, D. Li, M. Messerschmidt, S. Boutet, G. J. Williams, J. E. Koglin, M. M. Seibert, C. Wang, S. T. Shah, S. Basu, R. Fromme, C. Kupitz, K. N. Rendek, I. Grotjohann, P. Fromme, R. A. Kirian, K. R. Beyerlein, T. A. White, H. N. Chapman, M. Caffrey, J. C. Spence, R. C. Stevens, V. Cherezov, Science 2013, 342, 1521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFemu7zE&md5=017e9acb130f3d216d317ebfddd42508CAS | 24357322PubMed |

[17]  M. S. Hunter, D. P. DePonte, D. A. Shapiro, R. A. Kirian, X. Wang, D. Starodub, S. Marchesini, U. Weierstall, R. B. Doak, J. C. Spence, P. Fromme, Biophys. J. 2011, 100, 198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wkt7vO&md5=fb42a487513227a799cc538b0de67d7bCAS | 21190672PubMed |

[18]  U. Weierstall, D. James, C. Wang, T. A. White, D. Wang, W. Liu, J. C. Spence, R. Bruce Doak, G. Nelson, P. Fromme, R. Fromme, I. Grotjohann, C. Kupitz, N. A. Zatsepin, H. Liu, S. Basu, D. Wacker, G. W. Han, V. Katritch, S. Boutet, M. Messerschmidt, G. J. Williams, J. E. Koglin, M. Marvin Seibert, M. Klinker, C. Gati, R. L. Shoeman, A. Barty, H. N. Chapman, R. A. Kirian, K. R. Beyerlein, R. C. Stevens, D. Li, S. T. Shah, N. Howe, M. Caffrey, V. Cherezov, Nat. Commun. 2014, 5, 3309.
         | Crossref | GoogleScholarGoogle Scholar | 24525480PubMed |

[19]  M. Caffrey, D. Li, N. Howe, S. T. Shah, Philos. Trans. R. Soc., B 1647, 2014, 369.

[20]  Y. Hashem, A. des Georges, J. Fu, S. N. Buss, F. Jossinet, A. Jobe, Q. Zhang, H. Y. Liao, R. A. Grassucci, C. Bajaj, E. Westhof, S. Madison-Antenucci, J. Frank, Nature 2013, 494, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVKhurw%3D&md5=d3838a68d6ba7df307f3d28ed6c51321CAS | 23395961PubMed |

[21]  P. C. A. da Fonseca, J. He, E. P. Morris, Mol. Cell 2012, 46, 54.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVakur0%3D&md5=c4333d61f8fe30284e4f5ab7b85823beCAS | 23644547PubMed |

[22]  M. Liao, E. Cao, D. Julius, Y. Cheng, Nature 2013, 504, 107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVyis77N&md5=12d677f7c2bb6733d5b8f7b13b4496d3CAS | 24305160PubMed |

[23]  A. Heikal, Y. Nakatani, E. Dunn, M. R. Weimar, C. L. Day, E. N. Baker, J. S. Lott, L. A. Sazanov, G. M. Cook, Mol. Microbiol. 2014, 91, 950.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtVCntbY%3D&md5=20b49379c3e00f855a1e86d3c8c0576aCAS | 24444429PubMed |

[24]  A. J. Warman, T. S. Rito, N. E. Fisher, D. M. Moss, N. G. Berry, P. M. O’Neill, S. A. Ward, G. A. Biagini, J. Antimicrob. Chemother. 2013, 68, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslGnu7s%3D&md5=d12adeac1f3d39c4aa862ebae4b4aff7CAS | 23228936PubMed |

[25]  N. Noinaj, A. J. Kuszak, J. C. Gumbart, P. Lukacik, H. Chang, N. C. Easley, T. Lithgow, S. K. Buchanan, Nature 2013, 501, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGlt77E&md5=b5e72b9b51896857dc40d9c1690a5b77CAS | 23995689PubMed |

[26]  C. F. Higgins, Res. Microbiol. 2001, 152, 205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks12jsrc%3D&md5=2e9b61fe9681919969324f95b81de75bCAS | 11421269PubMed |

[27]  R. J. Dawson, K. P. Locher, Nature 2006, 443, 180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVansLY%3D&md5=f598083acba9e9d88e42cf000c6a7e91CAS | 16943773PubMed |

[28]  A. Ward, C. L. Reyes, J. Yu, C. B. Roth, G. Chang, Proc. Natl. Acad. Sci. USA 2007, 104, 19005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSru7bO&md5=ff1304452fe25eb2badf232cbe21732aCAS | 18024585PubMed |

[29]  N. S. Kadaba, J. T. Kaiser, E. Johnson, A. Lee, D. C. Rees, Science 2008, 321, 250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1entb0%3D&md5=8e9a9c283942d96e76f229a2d277c32aCAS | 18621668PubMed |

[30]  J. K. Zolnerciks, E. J. Andress, M. Nicolaou, K. J. Linton, Essays Biochem. 2011, 50, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGrsLfI&md5=416160333de83576a6dff52acc2c1789CAS | 21967051PubMed |

[31]  H. G. Choudhury, Z. Tong, I. Mathavan, Y. Li, S. Iwata, S. Zirah, S. Rebuffat, H. W. van Veen, K. Beis, Proc. Natl. Acad. Sci. USA 2014, 111, 9145.
         | 1:CAS:528:DC%2BC2cXpsFCjtr0%3D&md5=107a15a27086ddb228d2ebad0c7bb8ebCAS | 24920594PubMed |

[32]  A. Mahamoud, J. Chevalier, S. Alibert-Franco, W. V. Kern, J. M. Pages, J. Antimicrob. Chemother. 2007, 59, 1223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVahtb4%3D&md5=e25f189692edbf0413b35edd6643d27dCAS | 17229832PubMed |

[33]  O. Lomovskaya, K. A. Bostian, Biochem. Pharmacol. 2006, 71, 910.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVKjurk%3D&md5=fccfd58868b63a67d1cf3109db7f1a88CAS | 16427026PubMed |

[34]  S. Murakami, R. Nakashima, E. Yamashita, A. Yamaguchi, Nature 2002, 419, 587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Ontr0%3D&md5=f94f166decb9ea09866ee865084bcf9aCAS | 12374972PubMed |

[35]  R. Nakashima, K. Sakurai, S. Yamasaki, K. Hayashi, C. Nagata, K. Hoshino, Y. Onodera, K. Nishino, A. Yamaguchi, Nature 2013, 500, 102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKhtLnO&md5=781c5804f43e15cfa981b96dec7b86bfCAS | 23812586PubMed |

[36]  D. Du, Z. Wang, N. R. James, J. E. Voss, E. Klimont, T. Ohene-Agyei, H. Venter, W. Chiu, B. F. Luisi, Nature 2014, 509, 512.
         | 1:CAS:528:DC%2BC2cXotlymsbY%3D&md5=c1eb14876833e9fcf9905b98e97a14e9CAS | 24747401PubMed |

[37]  B. Heras, S. R. Shouldice, M. Totsika, M. J. Scanlon, M. A. Schembri, J. L. Martin, Nat. Rev. Microbiol. 2009, 7, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFeqsbc%3D&md5=8788bdf8710b545a151df9694faf0bc0CAS | 19198617PubMed |

[38]  K. Inaba, Genes Cells 2010, 15, 935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFeqsrjM&md5=b10c3f05028372d5669f64947fe642fcCAS | 20695904PubMed |

[39]  K. Inaba, J. Biochem. 2009, 146, 591.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyrt77M&md5=632c2cbed62dbf9249d343b51db20bbeCAS | 19567379PubMed |

[40]  K. Inaba, S. Murakami, M. Suzuki, A. Nakagawa, E. Yamashita, K. Okada, K. Ito, Cell 2006, 127, 789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqs7vJ&md5=301041446194c8c4beda70211d6623dcCAS | 17110337PubMed |

[41]  K. Inaba, S. Murakami, A. Nakagawa, H. Iida, M. Kinjo, K. Ito, M. Suzuki, EMBO J. 2009, 28, 779.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslymtLY%3D&md5=48dd5251fe170fae8e53a2bab097abeaCAS | 19214188PubMed |

[42]  Y. Zhou, T. Cierpicki, R. H. Jimenez, S. M. Lukasik, J. F. Ellena, D. S. Cafiso, H. Kadokura, J. Beckwith, J. H. Bushweller, Mol. Cell 2008, 31, 896.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1amsb%2FO&md5=2a327bf3a5ff2e7e30c4e4afc04a2f71CAS | 18922471PubMed |

[43]  M. Tang, L. J. Sperling, D. A. Berthold, C. D. Schwieters, A. E. Nesbitt, A. J. Nieuwkoop, R. B. Gennis, C. M. Rienstra, J. Biomol. NMR 2011, 51, 227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWrtbbL&md5=c16078a5d461e89ad3295d89385f3aaaCAS | 21938394PubMed | 21938394PubMed |

[44]  M. Tang, A. E. Nesbitt, L. J. Sperling, D. A. Berthold, C. D. Schwieters, R. B. Gennis, C. M. Rienstra, J. Mol. Biol. 2013, 425, 1670.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslantr4%3D&md5=627ebf29ae818979e50b767ca3fb1ff5CAS | 23416557PubMed | 23416557PubMed |

[45]  K. Inaba, K. Ito, Biochim. Biophys. Acta 2008, 1783, 520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVaisLg%3D&md5=b30d6c4e5017043a6a421fdf8f287c65CAS | 18082634PubMed | 18082634PubMed |

[46]  R. J. Dutton, D. Boyd, M. Berkmen, J. Beckwith, Proc. Natl. Acad. Sci. USA 2008, 105, 11933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCnurjF&md5=09d6d2d32610ae50fcc621609ceda9a8CAS | 18695247PubMed | 18695247PubMed |

[47]  W. Li, S. Schulman, R. J. Dutton, D. Boyd, J. Beckwith, T. A. Rapoport, Nature 2010, 463, 507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Sks7s%3D&md5=a4741c95e6479483a6a36b109b57df7aCAS | 20110994PubMed | 20110994PubMed |

[48]  S. Liu, W. Cheng, R. Fowle Grider, G. Shen, W. Li, Nat. Commun. 2014, 5, 3110.
         | 24477003PubMed |
         | 24477003PubMed |

[49]  P. H. Chu, T. Y. Huang, J. Williams, D. W. Stafford, Proc. Natl. Acad. Sci. USA 2006, 103, 19308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1ylsg%3D%3D&md5=4b9e2f06b15590ad28297b27acc62f9eCAS | 17164330PubMed |

[50]  R. J. Dutton, A. Wayman, J. R. Wei, E. J. Rubin, J. Beckwith, D. Boyd, Proc. Natl. Acad. Sci. USA 2010, 107, 297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFCktA%3D%3D&md5=36e5f944acc34b8178502afd090b3e3fCAS | 20018758PubMed |

[51]  G. F. Hao, F. Wang, H. Li, X. L. Zhu, W. C. Yang, L. S. Huang, J. W. Wu, E. A. Berry, G. F. Yang, J. Am. Chem. Soc. 2012, 134, 11168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlemtLo%3D&md5=2d902889570799433e61c084c39547d6CAS | 22690928PubMed |

[52]  D. A. Erlanson, Top. Curr. Chem. 2011, 317, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  C. Seeger, T. Christopeit, K. Fuchs, K. Grote, W. Sieghart, U. H. Danielson, Biochem. Pharmacol. 2012, 84, 341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1Wqsrc%3D&md5=e7607407d05468509a7a2bc56d9a428dCAS | 22531219PubMed |

[54]  J. A. Christopher, J. Brown, A. S. Dore, J. C. Errey, M. Koglin, F. H. Marshall, D. G. Myszka, R. L. Rich, C. G. Tate, B. Tehan, T. Warne, M. Congreve, J. Med. Chem. 2013, 56, 3446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlekt7o%3D&md5=5d817910d4ab881fd9316d1a3532288dCAS | 23517028PubMed |

[55]  I. Navratilova, A. L. Hopkins, Future Med. Chem. 2011, 3, 1809.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlertbjN&md5=eac06514cf7954ec9065efad3c4b52e2CAS | 22004086PubMed |

[56]  T. Aristotelous, S. Ahn, A. K. Shukla, S. Gawron, M. F. Sassano, A. W. Kahsai, L. M. Wingler, X. Zhu, P. Tripathi-Shukla, X. P. Huang, J. Riley, J. Besnard, K. D. Read, B. L. Roth, I. H. Gilbert, A. L. Hopkins, R. J. Lefkowitz, I. Navratilova, ACS Med. Chem. Lett. 2013, 4, 1005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOktrnJ&md5=2bd995789a05a7d08a982d16eb3a2ae2CAS | 24454993PubMed |

[57]  V. Fruh, Y. Zhou, D. Chen, C. Loch, E. Ab, Y. N. Grinkova, H. Verheij, S. G. Sligar, J. H. Bushweller, G. Siegal, Chem. Biol. 2010, 17, 881.
         | Crossref | GoogleScholarGoogle Scholar | 20797617PubMed |

[58]  C. Lambruschini, M. Veronesi, E. Romeo, G. Garau, T. Bandiera, D. Piomelli, R. Scarpelli, C. Dalvit, ChemBioChem 2013, 14, 1611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Whs7vP&md5=22cfc3b141d312430ecd11f5c117a13eCAS | 23918626PubMed |

[59]  M. Veronesi, E. Romeo, C. Lambruschini, D. Piomelli, T. Bandiera, R. Scarpelli, G. Garau, C. Dalvit, ChemMedChem 2014, 9, 286.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSksbvN&md5=10c4cb8372d6bd424126adba28b84b0eCAS | 24339446PubMed | 24339446PubMed |

[60]  H. Zhang, Z. Q. Gao, H. F. Hou, J. H. Xu, L. F. Li, X. D. Su, Y. H. Dong, Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2011, 67, 734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlyluro%3D&md5=c59bdcf897aa5c2d036884a76d6da40aCAS |

[61]  J. Y. Lee, J. G. Yang, D. Zhitnitsky, O. Lewinson, D. C. Rees, Science 2014, 343, 1133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsVegs7o%3D&md5=3498774c60ff4873aa0eafa38e1b0858CAS | 24604198PubMed | 24604198PubMed |

[62]  M. Hohl, C. Briand, M. G. Grutter, M. A. Seeger, Nat. Struct. Mol. Biol. 2012, 19, 395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVegtLs%3D&md5=2343860a658019d3e4abc134897744d3CAS | 22447242PubMed | 22447242PubMed |