Cooperative Conformational Regulation in N-Heterocyclic Fluorohydrins
Alpesh Ramanlal Patel A and Fei Liu A BA Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
B Corresponding author. Email: fei.liu@mq.edu.au
Australian Journal of Chemistry 68(1) 50-56 https://doi.org/10.1071/CH14256
Submitted: 24 April 2014 Accepted: 16 May 2014 Published: 18 July 2014
Abstract
Seven-membered N-heterocycles are flexible ring structures, and their conformational control is important to their bioactivity. Our prior work shows that stereoselective monofluorination, if installed diastereoselectively, can bias a seven-membered, substituted azepane ring to one major conformation. However, multiple fluorination may not provide as much conformational bias due to conflicting effects. Here we show in our model azepane system that fluorohydrins can confer strong conformational bias if the relative configuration of the fluorine and hydroxy substitutent is appropriate to enable cooperative conformational control.
References
[1] S. L. Schreiber, Science 2000, 287, 1964.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFyrurw%3D&md5=92f759d0af426daef023906c2925403cCAS | 10720315PubMed |
[2] D. S. Tan, Nat. Chem. Biol. 2005, 1, 74.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1OmsLo%3D&md5=ca1a3ff5f793624408fad46d9d3094a2CAS | 16408003PubMed |
[3] W. R. Galloway, A. Isidro-Llobet, D. R. Spring, Nat. Commun. 2010, 1.
| Crossref | GoogleScholarGoogle Scholar |
[4] S. Llabrés, J. Juárez, F. Forti, R. Pouplana, F. J. Luque, in Physico–Chemical and Computational Approaches to Drug Discovery (Eds J. Luque, X. Barril) 2012, Ch. 1, pp. 1–22 (The Royal Society of Chemistry: London).
[5] L. Skjaerven, N. Reuter, A. Martinez, Future Med. Chem. 2011, 3, 2079.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyksrrE&md5=2bb2548677cf5ce4e53d825af343d5d4CAS | 22098354PubMed |
[6] K. K. Frederick, M. S. Marlow, K. G. Valentine, A. J. Wand, Nature 2007, 448, 325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVeqsbk%3D&md5=a427c4c77e8748f9517bde29054e8a58CAS | 17637663PubMed |
[7] B. Honarparvar, T. Govender, G. E. Maguire, M. E. Soliman, H. G. Kruger, Chem. Rev. 2014, 114, 493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVaru7jE&md5=6673647d70b1155bfb3798537642163aCAS | 24024775PubMed |
[8] J. Rebek, Science 1987, 235, 1478.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktF2msbo%3D&md5=0a57c0e2b4b115582cb641942e132aa0CAS | 3823899PubMed |
[9] E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 1210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVSrtbw%3D&md5=604d991eefd82afce2fd73c78c0a927bCAS |
[10] (a) X.-G. Hu, L. Hunter, Beilstein J. Org. Chem. 2013, 9, 2696.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFCru7g%3D&md5=a999f14b8eb660bbe8af48c9ffef6dd1CAS | 24367435PubMed |
(b) L. Hunter, Beilstein J. Org. Chem. 2010, 6, 38.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. O’Hagan, Chem. Soc. Rev. 2008, 37, 308.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) R. Filler, R. Saha, Future Med. Chem. 2009, 1, 777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjs7bO&md5=9a099e055dc0edf1066ba088086e6344CAS | 21426080PubMed |
(b) W. K. Hagmann, J. Med. Chem. 2008, 51, 4359.
| Crossref | GoogleScholarGoogle Scholar |
[12] N. E. Gooseman, D. O’Hagan, M. J. G. Peach, A. M. Slawin, A. M. Teale, D. J. Tozer, R. J. Young, Angew. Chem. Int. Ed. 2007, 46, 5904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlaltr0%3D&md5=0bc3d4378ed15e221035b37cebd4d27eCAS |
[13] H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVKrtrs%3D&md5=9d7636c4ee3d599aada29cbaf5633a87CAS | 19331346PubMed |
[14] (a) A. R. Patel, F. Liu, Tetrahedron 2013, 69, 744.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslejs7bI&md5=af6647fa9bcf1c0623ef890510bd1089CAS |
(b) A. R. Patel, G. Ball, L. Hunter, F. Liu, Org. Biomol. Chem. 2013, 11, 3781.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. R. Patel, L. Hunter, M. M. Bhadbhade, F. Liu, Eur. J. Org. Chem. 2014, 2584.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem. 2014, 57, 2832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFyksb%2FE&md5=ea49354b30a145cb54f002b78b763412CAS | 24102067PubMed |
(b) T. K. Beng, S. M. Wilkerson-Hill, R. Sarpong, Org. Lett. 2014, 16, 916.
| Crossref | GoogleScholarGoogle Scholar |
[16] L.-S. Sonntag, S. Schweizer, C. Ochsenfeld, H. Wennemers, J. Am. Chem. Soc. 2006, 128, 14697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWju7vM&md5=c1218acbf50b084d6ffd2b724d68fc55CAS | 17090057PubMed |
[17] (a) C. R. S. Briggs, M. J. Allen, D. O’Hagan, D. J. Tozer, D. J. A. M. Z. Slawin, A. E. Goeta, J. A. K. Howard, Org. Biomol. Chem. 2004, 2, 732.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFCjsLs%3D&md5=ae6e40dcbdbd54889cb032b8947cd133CAS |
(b) K. B. Wiberg, M. A. Murcko, K. E. Laidig, P. J. MacDougall, J. Phys. Chem. 1990, 94, 6956.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. R. S. Briggs, D. O’Hagan, H. S. Rzepa, A. M. Z. Slawin, J. Fluor. Chem. 2004, 125, 19.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. O’Hagan, C. Bilton, J. A. K. Howard, L. Knight, D. J. Tozer, J. Chem. Soc., Perkin Trans. 2 2000, 605.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) C. A. G. Haasnoot, F. A. A. M. DeLeeuw, C. Altona, Tetrahedron 1980, 36, 2783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXht1Sgu7g%3D&md5=9eb157730f0d86fb89bc22d4397a023eCAS |
(b) Three-bond H–H and H–F coupling constants obey Karplus relationships with the corresponding H–C–C–H and H–C–C–F dihedral angles: ‘typical’ 3JHH values are 1–3 Hz for gauche alignments and 6–9 Hz for anti alignments; see A. M. Ihrig, S. L. Smith, J. Am. Chem. Soc. 1970, 92, 759.
| Crossref | GoogleScholarGoogle Scholar |
(c) ‘Typical’ 3JHF values are 5–15 Hz for gauche alignments and 25–35 Hz for anti alignments; see C. Thibaudeau, J. Plavec, J. Chattopadhyaya, J. Org. Chem. 1998, 63, 4967.
| Crossref | GoogleScholarGoogle Scholar |
(d) For an example of conformational analysis by NMR and DFT methods, see P. Tähtinen, A. Bagno, K. D. Klika, K. Pihlaja, J. Am. Chem. Soc. 2003, 125, 4609.
| Crossref | GoogleScholarGoogle Scholar |
[19] MOE (Molecular Operating Environment software) 2013 (Chemical Computing Group Inc.: Montreal). Available at http://www.chemcomp.com
[20] (a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt1yrtg%3D%3D&md5=00496165f1b460f988a9ef18f727b853CAS |
(b) A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.
| Crossref | GoogleScholarGoogle Scholar |
(c) O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 799.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. von Arnim, R. Ahlrichs, J. Chem. Phys. 1999, 111, 9183.
| Crossref | GoogleScholarGoogle Scholar |
[21] See Supplementary Material.
[22] Consistent with earlier observations (Ref. [14c]), none of the fluorohydrin azepane 1H NMR spectra revealed new conformational equilibria at different temperatures suggesting low barriers for the conformational interchange.