Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Nanoscale Order in Molecular Systems from Single Crystal Diffuse Scattering

Darren J. Goossens A B and T. Richard Welberry A
+ Author Affiliations
- Author Affiliations

A Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

B Corresponding author. Email: goossens@rsc.anu.edu.au

Australian Journal of Chemistry 67(12) 1807-1812 https://doi.org/10.1071/CH14229
Submitted: 10 April 2014  Accepted: 23 May 2014   Published: 4 August 2014

Abstract

Diffuse scattering – the coherently scattered intensity that is not localised on the reciprocal lattice – contains a wealth of information about the local order (order on the nanoscale) in crystalline materials. Since molecules and atoms will respond most strongly to their local chemical environments, it is a valuable tool in understanding how structure leads to properties. However, at present its collection and analysis are relatively specialised. Monte Carlo (MC) computer simulation of a model structure has become a powerful and well-accepted technique for aiding the interpretation and analysis of diffuse scattering patterns. Its great strength is its flexibility – as long as an MC energy can be defined, a model can be developed and tested. At one extreme a very simplified model may be useful in demonstrating particular qualitative effects, while at the other a quantitative and very detailed description of disordered structures can be obtained. Examples discussed include new results concerning p-chloro-N-(p-chloro-benzylidene)aniline, a molecule showing various degrees of molecular flexibility.


References

[1]  B. D. Butler, T. R. Welberry, Acta Crystallogr. A 1993, 49, 736.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  B. E. Warren, B. L. Averbach, B. W. Roberts, J. Appl. Phys. 1951, 22, 1493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XisFOltw%3D%3D&md5=53db3b1aa9ba1009d90d377eb6dcdc23CAS |

[3]  T. R. Welberry, Diffuse X-Ray Scattering and Models of Disorder 2004 (Oxford University Press: Oxford).

[4]  T. J. Hicks, Adv. Phys. 1996, 45, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvVCgu7o%3D&md5=7bd7815b0cc4d121ba64cf9d261d5ad4CAS |

[5]  D. J. Goossens, Acc. Chem. Res. 2013, 46, 2597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFyntLs%3D&md5=4c823919ff2c94b1ca5bf4643f7726aeCAS | 23735073PubMed |

[6]  N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, J. Chem. Phys. 1953, 21, 1087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXltlKhsw%3D%3D&md5=7e331958221b577e1bf0280cf256cbccCAS |

[7]  M. Paściak, M. Wołcyrz, A. Pietraszko, S. Leoni, Phys. Rev. B 2010, 81, 014107.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  D. J. Goossens, A. P. Heerdegen, E. J. Chan, T. R. Welberry, Metall. Mater. Trans. A, 2011, 42, 23.
         | 1:CAS:528:DC%2BC3cXhsF2mtrbJ&md5=a4040863abf22f12870a6201ede9467fCAS |

[9]  J. C. Osborn, T. R. Welberry, J. Appl. Cryst. 1990, 23, 476.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  T. R. Welberry, D. J. Goossens, A. J. Edwards, W. I. F. David, Acta Crystallogr. A 2001, 57, 101.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7jtlWmtw%3D%3D&md5=a140ee57c3f1bd7233c34b34b93f92e7CAS | 11124508PubMed |

[11]  T. R. Welberry, B. D. Butler, A. P. Heerdegen, Acta Chim. Hung. 1993, 130, 327.
         | 1:CAS:528:DyaK2cXivVGmtbc%3D&md5=6acccbfb24ca90f664f49c637592cdcdCAS |

[12]  T. R. Welberry, B. D. Butler, J. Appl. Cryst. 1994, 27, 205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt1ajsbY%3D&md5=6d81baa4fc9016e0e7c146a8f2b15bdbCAS |

[13]  T. R. Welberry, Acta Crystallogr. A 2000, 56, 348.
         | Crossref | GoogleScholarGoogle Scholar | 10916644PubMed |

[14]  T. Weber, M. A. Estermann, H. B. Bürgi, Acta Crystallogr. 2001, 57, 579.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvitVWluw%3D%3D&md5=336b0e86a5873cfb7b1e88608fd250a9CAS |

[15]  T. R. Welberry, D. J. Goossens, D. R. Haeffner, P. L. Lee, J. Almer, J. Synchrotron Radiat. 2003, 10, 284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFGmtLk%3D&md5=9fe495ba2685a05d7dc4e67aa988f5d3CAS | 12714763PubMed |

[16]  M. A. Estermann, W. Steurer, Phase Transit. 1998, 67, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFOnu7s%3D&md5=b6c7aa9b0873f6e327b8c18d307722cfCAS |

[17]  E. J. Chan, T. R. Welberry, D. J. Goossens, A. P. Heerdegen, A. G. Beasley, P. J. Chupas, Acta Crystallogr. B 2009, 65, 382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlyhs7w%3D&md5=e3fc8e9a495797362a91341a3ce804eaCAS | 19461149PubMed |

[18]  E. J. Chan, T. R. Welberry, Acta Crystallogr. B 2010, 66, 260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFensr0%3D&md5=e0e5ecb8e5a94626b701a07665c58a7cCAS | 20305360PubMed |

[19]  E. J. Chan, A. D. Rae, T. R. Welberry, Acta Crystallogr. B 2009, 65, 509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslarsbY%3D&md5=876757522ff774efc4f16a3509a2debeCAS | 19617687PubMed |

[20]  G. Filippini, A. Gavezotti, Acta Crystallogr. B 1993, 49, 868.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  A. Bondi, J. Phys. Chem. 1964, 68, 441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=116107986ca72c813bccbb0748675625CAS |

[22]  E. J. Chan, T. R. Welberry, D. J. Goossens, A. P. Heerdegen, J. Appl. Cryst. 2010, 43, 913.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVygtb4%3D&md5=265e3a5e6a8f2ed04bcc776e5b871df8CAS |

[23]  E. J. Chan, D. J. Goossens, Acta Crystallogr. B 2012, 68, 80.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGnsrs%3D&md5=813177448278d85f0146805b1cd9386bCAS | 22267561PubMed |

[24]  J. M. Hudspeth, D. J. Goossens, T. R. Welberry, J. Appl. Cryst. 2014, 47, 544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1ejsLk%3D&md5=06dd5f7148fde6066e4e0917a9bcf8b6CAS |

[25]  T. R. Welberry, T. Proffen, M. Bown, Acta Crystallogr. A 1998, 54, 661.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  T. R. Welberry, D. J. Goossens, A. J. Edwards, W. I. F. David, Acta Crystallogr. A 2001, 57, 101.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7jtlWmtw%3D%3D&md5=a140ee57c3f1bd7233c34b34b93f92e7CAS | 11124508PubMed |

[27]  D. J. Goossens, T. R. Welberry, A. P. Heerdegen, A. J. Edwards, Z. Kristallogr. 2005, 220, 1035.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1altr7P&md5=48f0af325bf7bc3be0f8dcb7e5fe8157CAS |

[28]  J. Bernstein, I. Izak, J. Chem. Soc., Perkin Trans. 2 1976, 429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhsFShtLg%3D&md5=eb318da2ffacb02d2cc5ef44350eda09CAS |

[29]  J. Bernstein, G. M. J. Schmidt, J. Chem. Soc., Perkin Trans. 2 1972, 951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xks1Wnsrs%3D&md5=81f1cb16306a81c273ba756fb88dc51eCAS |

[30]  D. J. Goossens, M. J. Gutmann, Phys. Rev. Lett. 2009, 102, 015505.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M7ot1Oltg%3D%3D&md5=4a760b668cceb3df1eb0175f9bc7252aCAS | 19257209PubMed |

[31]  J. M. Hudspeth, D. J. Goossens, T. R. Welberry, M. J. Gutmann, J. Mater. Sci. 2013, 48, 6605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFemsrw%3D&md5=e9d52d03f004707f3b99679c9a789fadCAS |