Nanoscale Order in Molecular Systems from Single Crystal Diffuse Scattering
Darren J. Goossens A B and T. Richard Welberry AA Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
B Corresponding author. Email: goossens@rsc.anu.edu.au
Australian Journal of Chemistry 67(12) 1807-1812 https://doi.org/10.1071/CH14229
Submitted: 10 April 2014 Accepted: 23 May 2014 Published: 4 August 2014
Abstract
Diffuse scattering – the coherently scattered intensity that is not localised on the reciprocal lattice – contains a wealth of information about the local order (order on the nanoscale) in crystalline materials. Since molecules and atoms will respond most strongly to their local chemical environments, it is a valuable tool in understanding how structure leads to properties. However, at present its collection and analysis are relatively specialised. Monte Carlo (MC) computer simulation of a model structure has become a powerful and well-accepted technique for aiding the interpretation and analysis of diffuse scattering patterns. Its great strength is its flexibility – as long as an MC energy can be defined, a model can be developed and tested. At one extreme a very simplified model may be useful in demonstrating particular qualitative effects, while at the other a quantitative and very detailed description of disordered structures can be obtained. Examples discussed include new results concerning p-chloro-N-(p-chloro-benzylidene)aniline, a molecule showing various degrees of molecular flexibility.
References
[1] B. D. Butler, T. R. Welberry, Acta Crystallogr. A 1993, 49, 736.| Crossref | GoogleScholarGoogle Scholar |
[2] B. E. Warren, B. L. Averbach, B. W. Roberts, J. Appl. Phys. 1951, 22, 1493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XisFOltw%3D%3D&md5=53db3b1aa9ba1009d90d377eb6dcdc23CAS |
[3] T. R. Welberry, Diffuse X-Ray Scattering and Models of Disorder 2004 (Oxford University Press: Oxford).
[4] T. J. Hicks, Adv. Phys. 1996, 45, 243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvVCgu7o%3D&md5=7bd7815b0cc4d121ba64cf9d261d5ad4CAS |
[5] D. J. Goossens, Acc. Chem. Res. 2013, 46, 2597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFyntLs%3D&md5=4c823919ff2c94b1ca5bf4643f7726aeCAS | 23735073PubMed |
[6] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, J. Chem. Phys. 1953, 21, 1087.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXltlKhsw%3D%3D&md5=7e331958221b577e1bf0280cf256cbccCAS |
[7] M. Paściak, M. Wołcyrz, A. Pietraszko, S. Leoni, Phys. Rev. B 2010, 81, 014107.
| Crossref | GoogleScholarGoogle Scholar |
[8] D. J. Goossens, A. P. Heerdegen, E. J. Chan, T. R. Welberry, Metall. Mater. Trans. A, 2011, 42, 23.
| 1:CAS:528:DC%2BC3cXhsF2mtrbJ&md5=a4040863abf22f12870a6201ede9467fCAS |
[9] J. C. Osborn, T. R. Welberry, J. Appl. Cryst. 1990, 23, 476.
| Crossref | GoogleScholarGoogle Scholar |
[10] T. R. Welberry, D. J. Goossens, A. J. Edwards, W. I. F. David, Acta Crystallogr. A 2001, 57, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7jtlWmtw%3D%3D&md5=a140ee57c3f1bd7233c34b34b93f92e7CAS | 11124508PubMed |
[11] T. R. Welberry, B. D. Butler, A. P. Heerdegen, Acta Chim. Hung. 1993, 130, 327.
| 1:CAS:528:DyaK2cXivVGmtbc%3D&md5=6acccbfb24ca90f664f49c637592cdcdCAS |
[12] T. R. Welberry, B. D. Butler, J. Appl. Cryst. 1994, 27, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt1ajsbY%3D&md5=6d81baa4fc9016e0e7c146a8f2b15bdbCAS |
[13] T. R. Welberry, Acta Crystallogr. A 2000, 56, 348.
| Crossref | GoogleScholarGoogle Scholar | 10916644PubMed |
[14] T. Weber, M. A. Estermann, H. B. Bürgi, Acta Crystallogr. 2001, 57, 579.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvitVWluw%3D%3D&md5=336b0e86a5873cfb7b1e88608fd250a9CAS |
[15] T. R. Welberry, D. J. Goossens, D. R. Haeffner, P. L. Lee, J. Almer, J. Synchrotron Radiat. 2003, 10, 284.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFGmtLk%3D&md5=9fe495ba2685a05d7dc4e67aa988f5d3CAS | 12714763PubMed |
[16] M. A. Estermann, W. Steurer, Phase Transit. 1998, 67, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFOnu7s%3D&md5=b6c7aa9b0873f6e327b8c18d307722cfCAS |
[17] E. J. Chan, T. R. Welberry, D. J. Goossens, A. P. Heerdegen, A. G. Beasley, P. J. Chupas, Acta Crystallogr. B 2009, 65, 382.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlyhs7w%3D&md5=e3fc8e9a495797362a91341a3ce804eaCAS | 19461149PubMed |
[18] E. J. Chan, T. R. Welberry, Acta Crystallogr. B 2010, 66, 260.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFensr0%3D&md5=e0e5ecb8e5a94626b701a07665c58a7cCAS | 20305360PubMed |
[19] E. J. Chan, A. D. Rae, T. R. Welberry, Acta Crystallogr. B 2009, 65, 509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslarsbY%3D&md5=876757522ff774efc4f16a3509a2debeCAS | 19617687PubMed |
[20] G. Filippini, A. Gavezotti, Acta Crystallogr. B 1993, 49, 868.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. Bondi, J. Phys. Chem. 1964, 68, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=116107986ca72c813bccbb0748675625CAS |
[22] E. J. Chan, T. R. Welberry, D. J. Goossens, A. P. Heerdegen, J. Appl. Cryst. 2010, 43, 913.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVygtb4%3D&md5=265e3a5e6a8f2ed04bcc776e5b871df8CAS |
[23] E. J. Chan, D. J. Goossens, Acta Crystallogr. B 2012, 68, 80.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGnsrs%3D&md5=813177448278d85f0146805b1cd9386bCAS | 22267561PubMed |
[24] J. M. Hudspeth, D. J. Goossens, T. R. Welberry, J. Appl. Cryst. 2014, 47, 544.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1ejsLk%3D&md5=06dd5f7148fde6066e4e0917a9bcf8b6CAS |
[25] T. R. Welberry, T. Proffen, M. Bown, Acta Crystallogr. A 1998, 54, 661.
| Crossref | GoogleScholarGoogle Scholar |
[26] T. R. Welberry, D. J. Goossens, A. J. Edwards, W. I. F. David, Acta Crystallogr. A 2001, 57, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7jtlWmtw%3D%3D&md5=a140ee57c3f1bd7233c34b34b93f92e7CAS | 11124508PubMed |
[27] D. J. Goossens, T. R. Welberry, A. P. Heerdegen, A. J. Edwards, Z. Kristallogr. 2005, 220, 1035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1altr7P&md5=48f0af325bf7bc3be0f8dcb7e5fe8157CAS |
[28] J. Bernstein, I. Izak, J. Chem. Soc., Perkin Trans. 2 1976, 429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhsFShtLg%3D&md5=eb318da2ffacb02d2cc5ef44350eda09CAS |
[29] J. Bernstein, G. M. J. Schmidt, J. Chem. Soc., Perkin Trans. 2 1972, 951.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xks1Wnsrs%3D&md5=81f1cb16306a81c273ba756fb88dc51eCAS |
[30] D. J. Goossens, M. J. Gutmann, Phys. Rev. Lett. 2009, 102, 015505.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M7ot1Oltg%3D%3D&md5=4a760b668cceb3df1eb0175f9bc7252aCAS | 19257209PubMed |
[31] J. M. Hudspeth, D. J. Goossens, T. R. Welberry, M. J. Gutmann, J. Mater. Sci. 2013, 48, 6605.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFemsrw%3D&md5=e9d52d03f004707f3b99679c9a789fadCAS |