The Rise of Elemental Two-Dimensional Materials Beyond Graphene
Guy Le Lay A B C , Eric Salomon A , Paola De Padova B , Jean-Marc Layet A and Thierry Angot A C
+ Author Affiliations
- Author Affiliations
A Aix-Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille, France.
B Consiglio Nazionale delle Ricerche-ISM, via Fosso del Cavaliere 100, I-00133 Roma, Italy.
C Corresponding authors. Email: guy.lelay@univ-amu.fr; thierry.angot@univ-amu.fr
Australian Journal of Chemistry 67(10) 1370-1372 https://doi.org/10.1071/CH14194
Submitted: 1 April 2014 Accepted: 19 May 2014 Published: 25 July 2014
Abstract
Following the publication in 2012 of the first compelling evidence of the synthesis of silicene, the silicon based counterpart of graphene, the last two years have seen a surge of articles on elemental, novel two-dimensional materials beyond graphene. Here, research in this burgeoning field is highlighted.
References
[1] G. Brumfiel, Nature 2013, 495, 152.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFehsbg%3D&md5=0ab34b718936d7e2ecf834fa80f6fa14CAS | 23486035PubMed |
[2] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 2012, 108, 15550.
[3] C. L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitami, Y. Kim, N. Takagi, M. Kawai, Appl. Phys. Express 2012, 5, 045802.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. Fleurence, R. Friedlein, T. Osaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Phys. Rev. Lett. 2012, 108, 245501.
| Crossref | GoogleScholarGoogle Scholar | 23004288PubMed |
[5] L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer, H.-G. Gao, Nano Lett. 2013, 13, 685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWrsrk%3D&md5=7474911d1189482b3af046c45434861fCAS | 23330602PubMed |
[6] L. Matthes, O. Pulci, F. Bechstedt, J. Phys. Condens. Matter 2013, 25, 395305.
| Crossref | GoogleScholarGoogle Scholar | 24002054PubMed |
[7] E. Scalise, M. Houssa, G. Pourtois, B. van den Broek, V. Afanas’ev, A. Stesmans, Nano Res. 2013, 6, 19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWrtLs%3D&md5=f3a71c280bb038fbb2cf58a98181aa49CAS |
[8] Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.-C. Zhang, Phys. Rev. Lett. 2013, 111, 136804.
| Crossref | GoogleScholarGoogle Scholar | 24116803PubMed |
[9] H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, ACS Nano 2014, 8, 4033.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksVWisLo%3D&md5=48a7b62dae5acfdf8fd7500983d9ac58CAS | 24655084PubMed |
[10] L. Li, Y. Yu, G.-J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.-H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtlyht7c%3D&md5=3a0509648aedf6975b8e1485e6bf0475CAS | 24584274PubMed |
[11] Z.-G. Shao, X.-S. Ye, L. Yang, C.-L. Wang, J. Appl. Phys. 2013, 114, 093712.
| Crossref | GoogleScholarGoogle Scholar |
[12] C.-C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 2011, 107, 076802.
| Crossref | GoogleScholarGoogle Scholar | 21902414PubMed |
[13] M. Ezawa, Phys. Rev. Lett. 2012, 109, 055502.
| Crossref | GoogleScholarGoogle Scholar | 23006186PubMed |
[14] L. Chen, B. Feng, K. Wu, Appl. Phys. Lett. 2013, 102, 081602.
| Crossref | GoogleScholarGoogle Scholar |
[15] G. Baskaran, 2013, preprint available at http://arxiv.org/abs/1309.2242.
[16] J. Avila, P. De Padova, S. Cho, I. Colambo, S. Lorcy, C. Quaresima, P. Vogt, A. Resta, G. Le Lay, M. C. Asensio, J. Phys. Condens. Matter 2013, 25, 262001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCnsb7M&md5=a540f099e5b7a9913dde7bdd5ed63508CAS | 23759650PubMed |
[17] D. Tsoutsou, E. Xenogiannopoulou, E. Golias, P. Tsipas, A. Dimoulas, Appl. Phys. Lett. 2013, 103, 231604.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. Cahangirov, M. Audiffred, P. Tang, A. Iacomino, W. Duan, G. Merino, A. Rubio, Phys. Rev. B 2013, 88, 035432.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. Resta, T. Leoni, C. Barth, A. Ranguis, C. Becker, T. Bruhn, P. Vogt, G. Le Lay, Sci. Rep. 2013, 3, 2399.
| Crossref | GoogleScholarGoogle Scholar | 23928998PubMed |
[20] Y. Yuan, R. Quhe, J. Zheng, Y. Wang, Z. Ni, J. Shi, J. Lu, Physica E 2014, 58, 38.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFemu7c%3D&md5=21625a138b3eb512a8b56db9d004f581CAS |
[21] E. Cinquanta, E. Scalise, D. Chiappe, C. Grazianetti, B. van den Broek, M. Houssa, M. Fanciulli, A. Molle, J. Phys. Chem. C 2013, 117, 16719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFeqs7nK&md5=c1397c3b1d6494ea7c418f2999480120CAS |
[22] P. Vogt, P. Capiod, M. Berthe, A. Resta, P. De Padova, T. Bruhn, G. Le Lay, B. Grandidier, Appl. Phys. Lett. 2014, 104, 021602.
| Crossref | GoogleScholarGoogle Scholar |
[23] L. Chen, C. C. Liu, B. J. Feng, X. Y. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu, Phys. Rev. Lett. 2012, 109, 056804.
| Crossref | GoogleScholarGoogle Scholar | 23006197PubMed |
[24] E. Salomon, R. El Ajjouri, G. Le Lay, T. Angot, J. Phys.: Condens. Matter 2014, 26, 185003.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFGgt7g%3D&md5=03caa3a3f89aa5eb3f12949339155815CAS |
[25] P. De Padova, J. Avila, A. Resta, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, P. Vogt, M. C. Asensio, G. Le Lay, J. Phys. Condens. Matter 2013, 25, 382202.
| Crossref | GoogleScholarGoogle Scholar | 23988580PubMed |
[26] P. De Padova, P. Vogt, A. Resta, J. Avila, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, T. Hirahara, T. Shirai, S. Hasegawa, M. C. Asensio, G. Le Lay, Appl. Phys. Lett. 2013, 102, 163106.
| Crossref | GoogleScholarGoogle Scholar |
[27] I. de Padova, C. Ottaviani, C. Quaresima, B. Olivieri, P. Imperatori, E. Salomon, L. Quagliano, C. Romano, A. Vona, M. Muniz-Miranda, G. Le Lay, A. Generosi, B. Paci, T. Angot, 2D Materials 2014, in press.
[28] S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, S. Ciraci, Phys. Rev. Lett. 2009, 102, 236804.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MrjvFCktg%3D%3D&md5=76216060aa0478f2bda0feee0126b60aCAS | 19658958PubMed |
[29] L. Li, S.-Z. Lu, J. Pan, Z. Qin, Y.-Q. Wang, Y. Wang, G.-Y. Cao, S. Du, H.-J. Gao, Adv. Mater. 2014, in press.
| Crossref | GoogleScholarGoogle Scholar | 24841824PubMed |
[30] E. Bianco, S. Butler, S. Jiang, O. D. Restrepo, W. Windl, J. E. Goldberger, ACS Nano 2013, 7, 4414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktF2ksbg%3D&md5=c8867c7086b8fcf7b9d9561db55802c8CAS | 23506286PubMed |
[31] C.-C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 2011, 84, 195430.
| Crossref | GoogleScholarGoogle Scholar |
[32] E. S. Reich, Nature 2014, 506, 19.
| Crossref | GoogleScholarGoogle Scholar | 24499900PubMed |
[33] D. Chiappe, E. Scalise, E. Cinquanta, C. Grazianetti, B. van den Broek, M. Fanciulli, M. Houssa, A. Molle, Adv. Mater. 2014, 26, 2096.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCjsbjE&md5=cfd9f8522b0ec9b9b72e056144e5d67bCAS | 24347540PubMed |