Chiral Bicyclic Guanidine-Catalysed Conjugate Addition of α-Fluoro-β-Ketoesters to Cyclic Enones
Zhenzhong Jing A , Jin Liu A , Kek Foo Chin B , Wenchao Chen A , Choon-Hong Tan B and Zhiyong Jiang A CA Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, China.
B Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
C Corresponding author. Email: chmjzy@henu.edu.cn
Australian Journal of Chemistry 67(7) 1119-1123 https://doi.org/10.1071/CH14187
Submitted: 29 March 2014 Accepted: 30 April 2014 Published: 23 May 2014
Abstract
By utilising a chiral bicyclic guanidine as catalyst and triethylamine as additive, the first asymmetric Michael addition of α-fluoro-β-ketoesters to various cyclic enones has been successfully developed, affording a variety of Michael adducts with potential synthetic utilities with satisfactory stereoselectivity (up to 94 % ee and 4.3 : 1 dr).
References
[1] (a) Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications (Eds R. Filler, Y. Kobayashi, L. M. Yagupolskii) 1993 (Elsevier: Amsterdam).(b) T. Hiyama, Organofluorine Compounds: Chemistry and Applications 2000 (Springer: Berlin).
(c) K. Uneyama, Organo-fluorine Chemistry 2006 (Blackwell: Oxford).
(d) D. O’Hagan, Chem. Soc. Rev. 2008, 37, 308.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) For selected reviews, see: J.-A. Ma, D. Cahard, Chem. Rev. 2004, 104, 6119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlSjtLY%3D&md5=1f1153e96e104b540ff095d11bb9f51cCAS | 15584697PubMed |
(b) H. Ibrahim, A. Togni, Chem. Commun. 2004, 1147.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. M. Pihko, Angew. Chem. Int. Ed. 2006, 45, 544.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. A. Brunet, D. O’Hagan, Angew. Chem. Int. Ed. 2008, 47, 1179.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Lectard, Y. Hamashima, M. Sodeoka, Adv. Synth. Catal. 2010, 352, 2708.
| Crossref | GoogleScholarGoogle Scholar |
(f) D. Cahard, X. Xu, S. Couve-Bonnaire, X. Pannecoucke, Chem. Soc. Rev. 2010, 39, 558.
| Crossref | GoogleScholarGoogle Scholar |
(g) C. Hollingworth, V. Gouverneur, Chem. Commun. 2012, 48, 2929.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) J. Christoffers, A. Mann, Angew. Chem. Int. Ed. 2001, 40, 4591.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGqtw%3D%3D&md5=ddf021265d8f7c1a8d3e10d0e8e98b3fCAS |
(b) For a recent book, see: Quaternary Stereocenters (Eds J. Christoffers, A. Baro) 2005 (Wiley-VCH: Weinheim).
[4] R. He, X. Wang, T. Hashimoto, K. Maruoka, Angew. Chem. Int. Ed. 2008, 47, 9466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2mt7%2FO&md5=fc608b48fd6604b3f9e04b3630b95a92CAS |
[5] X. Han, J. Luo, C. Liu, Y. Lu, Chem. Commun. 2009, 2044.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsleltbg%3D&md5=933c5d4fcf2b3a498b0e420e664f01d4CAS |
[6] Z. Jiang, Y. Pan, Y. Zhao, T. Ma, R. Lee, Y. Yang, K.-W. Huang, M. W. Wong, C.-H. Tan, Angew. Chem. Int. Ed. 2009, 48, 3627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVKgtLw%3D&md5=a9eac1958be77851bf429408c7ff4da4CAS |
[7] H.-F. Cui, Y.-Q. Yang, Z. Chai, P. Li, C.-W. Zheng, S.-Z. Zhu, G. Zhao, J. Org. Chem. 2010, 75, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSnu77N&md5=312feb3d8ef78dfab34e3b4c8abad4ffCAS | 19957965PubMed |
[8] X. Han, F. Zhong, Y. Lu, Adv. Synth. Catal. 2010, 352, 2778.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlygsbbI&md5=bf45a4e0990dca4f60658c676043d301CAS |
[9] (a) X. Han, J. Kwiatkowski, F. Xue, K.-W. Huang, Y. Lu, Angew. Chem. Int. Ed. 2009, 48, 7604.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Sru73O&md5=f7daddc0bbe8ccf53bb3da4905b59702CAS |
(b) Y. Pan, Y. Zhao, T. Ma, Y. Yang, H. Liu, Z. Jiang, C.-H. Tan, Chem. – Eur. J. 2010, 16, 779.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Kang, D. Y. Kim, Tetrahedron Lett. 2011, 52, 2356.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. J. Yoon, Y. K. Kang, D. Y. Kim, Synlett 2011, 420.
[10] L. Yan, Z. Han, B. Zhu, C. Yang, C.-H. Tan, Z. Jiang, Beilstein J. Org. Chem. 2013, 9, 1853.
| Crossref | GoogleScholarGoogle Scholar | 24062852PubMed |
[11] (a) A. Prieto, N. Halland, K. A. Jørgensen, Org. Lett. 2005, 7, 3897.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVCgs7o%3D&md5=1e4a1093c5bde4c21fad59c50825676cCAS | 16119926PubMed |
(b) M. Shi, W. Zhang, Adv. Synth. Catal. 2005, 347, 535.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Hanessian, Z. Shao, J. S. Warrier, Org. Lett. 2006, 8, 4787.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. Ye, Z. Jiang, Y. Zhao, S. L. M. Goh, D. Leow, Y.-T. Soh, C.-H. Tan, Adv. Synth. Catal. 2007, 349, 2454.
| Crossref | GoogleScholarGoogle Scholar |
(e) Z. Jiang, W. Ye, Y. Yang, C.-H. Tan, Adv. Synth. Catal. 2008, 350, 2345.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. Kawamura, H. Fukuzawa, M. Hayashi, Org. Lett. 2008, 10, 3509.
| Crossref | GoogleScholarGoogle Scholar |
(g) Y. Tanaka, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2008, 130, 6072.
| Crossref | GoogleScholarGoogle Scholar |
(h) P. Li, Y. Wang, X. Liang, J. Ye, Chem. Commun. 2008, 3302.
| Crossref | GoogleScholarGoogle Scholar |
(i) A. J. Smith, L. K. Abbott, S. F. Martin, Org. Lett. 2009, 11, 4200.
| Crossref | GoogleScholarGoogle Scholar |
(j) F. Pesciaioli, X. Tian, G. Bencivenni, G. Bartoli, P. Melchiorre, Synlett 2010, 1704.
(k) M. H. Freund, S. B. Tsogoeva, Synlett 2011, 503.
(l) J. Streuff, Chem. – Eur. J. 2011, 17, 5507.
| Crossref | GoogleScholarGoogle Scholar |
(m) N. Shibata, M. Yoshimura, H. Yamada, R. Arakawa, S. Sakaguchi, J. Org. Chem. 2012, 77, 4079.
| Crossref | GoogleScholarGoogle Scholar |
(n) C. Yang, W. Chen, W. Yang, B. Zhu, L. Yan, C.-H. Tan, Z. Jiang, Chem. Asian J. 2013, 8, 2960.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) For selected reviews, see: D. Leow, C.-H. Tan, Chem. Asian J. 2009, 4, 488.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1Cht7Y%3D&md5=a45f1b343c800492213f675cfdea6210CAS | 19101939PubMed |
(b) M. P. Coles, Chem. Commun. 2009, 3659.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Leow, C.-H. Tan, Synlett 2010, 1589.
(d) X. Fu, C.-H. Tan, Chem. Commun. 2011, 47, 8210.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. Selig, Synthesis 2013, 45, 703.
| Crossref | GoogleScholarGoogle Scholar |
(f) For selected examples, see: E. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Terada, H. Ube, Y. Yaguchi, J. Am. Chem. Soc. 2006, 128, 1454.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. Terada, M. Nakano, H. Ube, J. Am. Chem. Soc. 2006, 128, 16044.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. Terada, T. Ikehara, H. Ube, J. Am. Chem. Soc. 2007, 129, 14112.
| Crossref | GoogleScholarGoogle Scholar |
(j) H. Ube, N. Shimada, M. Terada, Angew. Chem. Int. Ed. 2010, 49, 1858.
| Crossref | GoogleScholarGoogle Scholar |
(k) M. Terada, K. Ando, Org. Lett. 2011, 13, 2026.
| Crossref | GoogleScholarGoogle Scholar |
(l) S. Dong, X. Liu, Y. Zhang, L. Lin, X. Feng, Org. Lett. 2011, 13, 5060.
| Crossref | GoogleScholarGoogle Scholar |
(m) X. Xiao, X. Liu, S. Dong, Y. Cai, L. Lin, X. Feng, Chem. – Eur. J. 2012, 18, 15922.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) J. Shen, T. T. Nguyen, Y.-P. Goh, W. Ye, X. Fu, J. Xu, C.-H. Tan, J. Am. Chem. Soc. 2006, 128, 13692.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWhsL7E&md5=3a7fd3ad87faf7d5434adc20532a4c74CAS | 17044689PubMed |
(b) D. Leow, S. Lin, S. K. Chittimalla, X. Fu, C.-H. Tan, Angew. Chem. Int. Ed. 2008, 47, 5641.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Liu, D. Leow, K.-W. Huang, C.-H. Tan, J. Am. Chem. Soc. 2009, 131, 7212.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Zhao, X. Lin, Y. Pan, L. Zong, W. Feng, C.-H. Tan, K.-W. Huang, Chem. Commun. 2012, 48, 5479.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Pan, C. W. Kee, Z. Jiang, T. Ma, Y. Zhao, Y. Yang, H. Xue, C.-H. Tan, Chem. – Eur. J. 2011, 17, 8363.
| Crossref | GoogleScholarGoogle Scholar |
(f) X. Fu, Z. Jiang, C.-H. Tan, Chem. Commun. 2007, 5058.
| Crossref | GoogleScholarGoogle Scholar |
(g) Z. Jiang, Y. Yang, Y. Pan, Y. Zhao, H. Liu, C.-H. Tan, Chem. – Eur. J. 2009, 15, 4925.
| Crossref | GoogleScholarGoogle Scholar |
(h) L. Li, W. Chen, W. Yang, Y. Pan, H. Liu, C.-H. Tan, Z. Jiang, Chem. Commun. 2012, 48, 5124.
| Crossref | GoogleScholarGoogle Scholar |
(i) J. Wang, J. Chen, C. W. Kee, C.-H. Tan, Angew. Chem. Int. Ed. 2012, 51, 2382.
| Crossref | GoogleScholarGoogle Scholar |
(j) Y. Zhao, Y. Pan, H. Liu, Y. Yang, Z. Jiang, C.-H. Tan, Chem. – Eur. J. 2011, 17, 3571.
| Crossref | GoogleScholarGoogle Scholar |
(k) W. Chen, W. Yang, L. Yan, C.-H. Tan, Z. Jiang, Chem. Commun. 2013, 49, 9854.
| Crossref | GoogleScholarGoogle Scholar |